The sun shines at a 30° angle to the ground. To the nearest inch, how long is the shadow cast by a 72-in. tall fence post?
1 answer:
The length of the shadow is 124.7 in
<u>Explanation:</u>
<u />
Given:
Angle, θ = 30°
Height of the fence, h = 72 in
Length of the shadow, l = ?
Given:
tan 30° = ![\frac{perpendicular}{base} = \frac{height of the fence}{length of the shadow}](https://tex.z-dn.net/?f=%5Cfrac%7Bperpendicular%7D%7Bbase%7D%20%20%3D%20%5Cfrac%7Bheight%20of%20the%20fence%7D%7Blength%20of%20the%20shadow%7D)
![\frac{1}{\sqrt{3} } = \frac{72}{l} \\\\l = 72\sqrt{3} \\\\l = 124.7 in](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%20%7D%20%3D%20%5Cfrac%7B72%7D%7Bl%7D%20%5C%5C%5C%5Cl%20%3D%2072%5Csqrt%7B3%7D%20%5C%5C%5C%5Cl%20%3D%20124.7%20in)
Therefore, the length of the shadow is 124.7 in
You might be interested in
Y=MX+C C=1 0=m(1)+1 m=-1 Y=-X+1
Answer:
Step-by-step explanation:
formula for area of parallelogram
= A=bh
Answer:
930=9 hundreds 3 tens
93times10
80=8 tens
320= 3 hundreds 2 tens
8000=8 thousands
Answer:
9 years
Step-by-step explanation:
37-21.25 =15.75ft
1.75ft per year
15.75 / 1.75 = 9 years