1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Damm [24]
3 years ago
9

A horizontal curve is being designed through mountainous terrain for a four-lane road with lanes are 10 ft wide. The central ang

le (Δ) is 40°, the tangent distance is 520 ft, and the stationing of the PI is 2600+00. The coefficient of friction is .08 and the curve’s superelevation is .09 ft/ft. What is the stationing of the PC and PT, and what is the safe vehicle speed?

Engineering
1 answer:
lys-0071 [83]3 years ago
7 0

Answer:

Check the Attached Image

Explanation:

The full solution is in the attached image below

You might be interested in
When is a handrail required for stairs?
Leviafan [203]

Answer:

after 8 stepshddnffuddbnggkbdbkloyr

5 0
3 years ago
High strength steels are being used to reduce weight on cars. Explain why using a high strength steel would allow you to reduce
gulaghasi [49]

Engaging the frequently tough requirements of vehicle safety, weight reduction for combustible economy, and manufacturability has influenced the steel industry to create a unique variety of 'super steels' for the automobiles of the future.

<h3><u>Explanation</u>:</h3>

• That steel, though, is far more advanced than the materials of just a few years ago.

• At the forefront of these is Advanced High Strength Steel, AHSS, developed by World Auto Steel’s member companies, which is demonstrating to be something of a vision in automobile production.  

• The standard engineering trade-off in steel preference involves considering the need for ultimate strength against flexibility and work-ability – stronger steels tend to be stiffer and less ductile, making them more difficult to develop into cars and more laborious to weld.

• AHSS can retain greatest of the ductility and work-ability of lower grades of steel, while offering much greater strength.

• Where a typical mild steel might have a tensile strength of 300MPa, AHSS can exceed 1500MPa while retaining a highest elongation of 25%, compared to about 40% for mild steel. The intrigue is in the micro-structure, containing a martensite, bainite, austenite phase rather than ferrite, pearlite, or cementite.

4 0
3 years ago
Consider liquid n-hexane in a 50-mm diameter graduated cylinder. Air blows across the top of the cylinder. The distance from the
ra1l [238]

The evaporation rate of the n-Hexane is 7.85 \times 10^{-6} \mathrm{mol} / \mathrm{s}

<u>Explanation</u>:

This is a situation regarding diffusing A through non-diffusing B.

A = n-Hexane B=Air

Where the molar flux is provided by,

N_{A}=D_{A B} P_{T}\left(P_{A 1}-P_{A 2}\right) / R T z P_{b m}

\mathrm{D}_{\mathrm{AB}}=8.8 \times 10^{-6} \mathrm{m}^{2} / \mathrm{s}

P_{t}=1 a t m=101325 P a\\

\text { so, } P_{A 1}= the vapor pressure at hexane 25 \mathrm{C} =20158.2 \mathrm{Pa}

For wind, assume negligible hexane is present, hence P_{A 2}=0

Now,

\mathrm{P}_{\mathrm{B} 1}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{A} 1}=101325-20158.2 \mathrm{P}_{\mathrm{a}}

\mathrm{P}_{\mathrm{B} 2}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{A} 2}=\mathrm{P}_{\mathrm{T}}=101325 \mathrm{Pa}

P_{B M}=\frac{\left(P_{B 2}-P_{B 1}\right)}{\log _{e}\left(P_{B 2} / P_{B 1}\right)}\\

=\frac{101325-81166.8}{\ln \left(\frac{101325}{81166.8}\right) \mathrm{Pa}}

=90873.57 \mathrm{Pa}

R=8.314 \mathrm{J} / \mathrm{mol}-\mathrm{K}

z=\text { distance }=20 \mathrm{cm}=0.2 \mathrm{m}\\

where T = 298 K

substituting all in the equation, we get

\begin{aligned}&\mathrm{N}_{\mathrm{A}}=\\&\left(8.8 \times 10^{-6} \mathrm{m}^{2} / \mathrm{s}\right) \times 101325 \mathrm{Pa} \times(20158.2 \mathrm{Pa}) /(8.314 \mathrm{J} / \mathrm{mol}-\mathrm{K} \times 0.2 \mathrm{m} \times 298 \mathrm{K}\\&\times 90873.57 \mathrm{Pa})\end{aligned}

=0.004 \mathrm{mol} / \mathrm{m}^{2} \mathrm{s}\\

Now,Flux \times area  = Molar rate of evaporation

Evaporation rate = 0.004 \mathrm{mol} / \mathrm{m}^{2}-5 \mathrm{x}\left(\pi \mathrm{d}^{2} / 4 \mathrm{m}^{2}\right)=0.004 \times(3.14 \times 0.05 \times 0.05 / 4)

Evaporation rate =7.85 \times 10^{-6} \mathrm{mol} / \mathrm{s}

6 0
3 years ago
An incompressible fluid flows between two infinite stationary parallel plates. The velocity profile is given by u=umaxðAy2 + By+
nexus9112 [7]

Answer:

the volume flow rate per unit depth is:

\frac{Q}{b} = \frac{2}{3} u_{max} h

the ratio is : \frac{V}{u_{max}}=\frac{2}{3}

Explanation:

From the question; the  equations of the velocities profile in the system are:

u = u_{max}(Ay^2+By+C)   ----- equation (1)

The above boundary condition can now be written as :

At y= 0; u =0           ----- (a)

At y = h; u =0            -----(b)

At y = \frac{h}{2} ; u = u_{max}     ------(c)

where ;

A,B and C are constant

h = distance between two plates

u = velocity

u_{max} = maximum velocity

y = measured distance upward from the lower plate

Replacing the boundary condition in (a) into equation (1) ; we have:

u = u_{max}(Ay^2+By+C) \\ \\ 0 = u_{max}(A*0+B*0+C) \\ \\ 0=u_{max}C \\ \\ C= 0

Replacing the boundary condition (b) in equation (1); we have:

u = u_{max}(Ay^2+By+C) \\ \\ 0 = u_{max}(A*h^2+B*h+C) \\ \\ 0 = Ah^2 +Bh + C \\ \\ 0 = Ah^2 +Bh + 0 \\ \\ Bh = - Ah^2 \\ \\ B = - Ah   \ \ \ \ \   --- (d)

Replacing the boundary condition (c) in equation (1); we have:

u = u_{max}(Ay^2+By+C) \\ \\ u_{max}= u_{max}(A*(\frac{h^2}{2})+B*\frac{h}{2}+C) \\ \\ 1 = \frac{Ah^2}{4} +B \frac{h}{2} + 0 \\ \\ 1 =  \frac{Ah^2}{4} + \frac{h}{2}(-Ah)  \\ \\ 1=  \frac{Ah^2}{4}  - \frac{Ah^2}{2}  \\ \\ 1 = \frac{Ah^2 - Ah^2}{4}  \\ \\ A = -\frac{4}{h^2}

replacing A = -\frac{4}{h^2} for A in (d); we get:

B = - ( -\frac{4}{h^2})hB = \frac{4}{h}

replacing the values of A, B and C into the velocity profile expression; we have:

u = u_{max}(Ay^2+By+C) \\ \\ u = u_{max} (-\frac{4}{h^2}y^2+\frac{4}{h}y)

To determine the volume flow rate; we have:

Q = AV \\ \\ Q= \int\limits^h_0 (u.bdy)

Replacing u_{max} (-\frac{4}{h^2}y^2+\frac{4}{h}y) \ for \ u

\frac{Q}{b} = \int\limits^h_0 u_{max}(-\frac{4}{h^2} y^2+\frac{4}{h}y)dy \\ \\  \frac{Q}{b} = u_{max}  \int\limits^h_0 (-\frac{4}{h^2} y^2+\frac{4}{h}y)dy \\ \\ \frac{Q}{b} = u_{max} (-\frac{-4}{h^2}\frac{y^3}{3} +\frac{4}{h}\frac{y^2}{y})^ ^ h}}__0  }} \\ \\ \frac{Q}{b} =u_{max} (-\frac{-4}{h^2}\frac{h^3}{3} +\frac{4}{h}\frac{h^2}{y})^ ^ h}}__0  }} \\ \\ \frac{Q}{b} = u_{max}(\frac{-4h}{3}+\frac{4h}2} ) \\ \\ \frac{Q}{b} = u_{max}(\frac{-8h+12h}{6}) \\ \\ \frac{Q}{b} =u_{max}(\frac{4h}{6})

\frac{Q}{b} = u_{max}(\frac{2h}{3}) \\ \\ \frac{Q}{b} = \frac{2}{3} u_{max} h

Thus; the volume flow rate per unit depth is:

\frac{Q}{b} = \frac{2}{3} u_{max} h

Consider the discharge ;

Q = VA

where :

A = bh

Q = Vbh

\frac{Q}{b}= Vh

Also;  \frac{Q}{b} = \frac{2}{3} u_{max} h

Then;

\frac{2}{3} u_{max} h = Vh \\ \\ \frac{V}{u_{max}}=\frac{2}{3}

Thus; the ratio is : \frac{V}{u_{max}}=\frac{2}{3}

5 0
4 years ago
A long iron rod (r 5 7870 kg/m3, cp 5 447 J/kg·K, k 5 80.2 W/m·K, and a 5 23.1 3 10–6 m2/s) with diameter of 25 mm is initially
MAXImum [283]

Answer:

Time required for iron rod surface temperature to cool to 200°C is 250 seconds.

Explanation:

7 0
4 years ago
Other questions:
  • Write a static method called quadrant that takes as parameters a pair of real numbers representing an (x, y) point and that retu
    9·1 answer
  • The closed tank of a fire engine is partly filled with water, the air space above being under pressure. A 6 cm bore connected to
    9·1 answer
  • This is a classification of back pain based on duration. A) AcuteB) RecurrentC) ChronicD) All of the above
    11·1 answer
  • Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d
    12·1 answer
  • Create a program that calculates the monthly payments on a loan using Decimal &amp; LC Console SEE Sanple Run Attached Specifica
    14·1 answer
  • The minimum fresh air requirement of a residential building is specified to be 0.35 air changes per hour (ASHRAE, Standard 62, 1
    10·1 answer
  • What does the DHCP server configures for each host?
    14·1 answer
  • Which one is an example of a digital input?
    5·1 answer
  • What are the complex structures and the advantages and disadvantages
    6·1 answer
  • Technician A says that collapsible steering columns may use a pyrotechnic charge. Technician B says that collapsible brake pedal
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!