Answer:
attached below is the detailed solution and answers
Explanation:
Attached below is the detailed solution
C(iii) : versus the parameter C
The parameter C is centered in a nonlinear equation, therefore the standard locus will not apply hence when you use a polynomial solver the roots gotten would be plotted against C
Answer is: $637.28; just did the math but i really don’t want to type it all out.
Complete question:
A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain fracture toughness of 98.9 MPa root m (90 ksi root in.) and a yield strength of 860 MPa (125,000 psi). The flaw size resolution limit of the flaw detection apparatus is 3.0 mm (0.12 in.). If the design stress is one-half of the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to detection.
Answer:
Since the flaw 17mm is greater than 3 mm the critical flaw for this plate is subject to detection
so that critical flow is subject to detection
Explanation:
We are given:
Plane strain fracture toughness K
Yield strength Y = 860 MPa
Flaw detection apparatus = 3.0mm (12in)
y = 1.0
Let's use the expression:
We already know
K= design
a = length of surface creak
Since we are to find the length of surface creak, we will make "a" subject of the formula in the expression above.
Therefore
Substituting figures in the expression above, we have:
= 0.0168 m
= 17mm
Therefore, since the flaw 17mm > 3 mm the critical flow is subject to detection