1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
3 years ago
6

What are the complex structures and the advantages and disadvantages

Engineering
1 answer:
Svetllana [295]3 years ago
4 0

Answer:

A complex system is a system composed of many components which may interact with each other.

ADVANTAGES

Structs are marginally faster at runtime than classes, due to optimisations done by the compiler. You can enforce full immutability. If you declare a struct instance as let, you will not be able to change its properties.

DISADVANTAGES

A complex corporate structure makes communication more difficult. For instance, when workers must interact with several supervisors, the various directives might work at cross purposes. Also, messages might get lost in the shuffle if there is no simple way to communicate within the organization.

You might be interested in
A biotechnology company produced 225 doses of somatropin, including 11 which were defective. Quality control test 15 samples at
Radda [10]

Answer:

  • <u>0.59</u>

Explanation:

The <em>batch</em> is <em>rejected</em> if any of the <em>random samples are found defective</em>, or, what is the same, it will be accepted only if all 15 samples are good.

The probability that none be defective is the same probability that all the samples are good. Thus, start to calculate the probability that the batch is accepted.

The probability that the first sample is good is 214 /225, because there are 225 - 11 = 214 good samples in 225 doses.

The probability that the second samples is good too is 213/224, because there is 1 less good sample, in the 224 remaining samples.

By the same process, you conclude that the consecutive probabilities of selecting a good sample are: 212/223, 211/222, 210/221, . . . up to 199/211.

The joint probability of all the samples are good is the product of each probability:

\frac{214}{225}\cdot\frac{213}{224}\cdot\frac{212}{223}\cdot\frac{211}{222}\cdot\frac{210}{221}\cdot\frac{209}{220}\cdot\frac{208}{219}\cdot\frac{207}{218}\cdot\frac{206}{217}\cdot\frac{205}{216}\cdot\frac{204}{215}\cdot\frac{203}{214}\cdot\frac{202}{213}\cdot\frac{201}{212}\cdot\frac{200}{211}\cdot\frac{199}{210}

The result is: 0.41278 ≈ 0.41

The conclusion is that the probability that all the samples are good and the batch is accepted is 0.41.

Therefore, <em>the probability that the batch is rejected</em> is 1 - 0.41 = 0.59.

4 0
3 years ago
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
I will definitely rate 5 stars/brainliest!!! HELP PLEASE!!! State University must purchase 1,100 computers from three vendors. V
romanna [79]
Why 1+12+ Y3 < 1100
Says the state of university Need to purchase 1100 computers in total, we have the following answer on the way top
3 0
3 years ago
In some companies, workers who increase the quantity or quality of their work receive a. benefits. c. performance bonuses. b. pe
Greeley [361]

Answer:

performance bonuses

Explanation:

3 0
3 years ago
1. A four-lane freeway (two lanes in each direction) is located on rolling terrain and has 12-ft lanes, no lateral obstructions
otez555 [7]

Answer:

Maximum number of vehicle = 308

Explanation:

See the attached file for the calculation.

6 0
3 years ago
Other questions:
  • WANT POINTS? JUST ANSWER ME:)
    6·2 answers
  • Carnot heat engine A operates between 20ºC and 520ºC. Carnot heat engine B operates between 20ºC and 820ºC. Which Carnot heat en
    5·1 answer
  • What is an isentropic process?
    7·1 answer
  • The button on the _ valve should be held when pressure bleeding the brakes
    8·1 answer
  • Think about the science you have studied in the past or are currently studying. Give an example of something you have learned in
    11·1 answer
  • g Asbestos is a fibrous silicate mineral with remarkably high tensile strength. But is no longer used because airborne asbestos
    5·1 answer
  • What level of wildfire risk do people living in Boulder have?
    9·1 answer
  • Using your knowledge of how an ATM is used, develop a set of use cases that could serve as a basis for understanding the require
    15·1 answer
  • Why do engineers play a variety of roles in the engineering process?
    6·1 answer
  • It tells the amount of materials to be purchased.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!