1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babunello [35]
3 years ago
5

An incompressible fluid flows between two infinite stationary parallel plates. The velocity profile is given by u=umaxðAy2 + By+

CÞ, where A, B, and C are constants and y is measured upward from the lower plate. The total gap width is h units. Use appropriate boundary conditions to express the magnitude and units of the constants in terms of h. Develop an expression for volume flow rate per unit depth and evaluate the ratio V=umax
Engineering
1 answer:
nexus9112 [7]3 years ago
5 0

Answer:

the volume flow rate per unit depth is:

\frac{Q}{b} = \frac{2}{3} u_{max} h

the ratio is : \frac{V}{u_{max}}=\frac{2}{3}

Explanation:

From the question; the  equations of the velocities profile in the system are:

u = u_{max}(Ay^2+By+C)   ----- equation (1)

The above boundary condition can now be written as :

At y= 0; u =0           ----- (a)

At y = h; u =0            -----(b)

At y = \frac{h}{2} ; u = u_{max}     ------(c)

where ;

A,B and C are constant

h = distance between two plates

u = velocity

u_{max} = maximum velocity

y = measured distance upward from the lower plate

Replacing the boundary condition in (a) into equation (1) ; we have:

u = u_{max}(Ay^2+By+C) \\ \\ 0 = u_{max}(A*0+B*0+C) \\ \\ 0=u_{max}C \\ \\ C= 0

Replacing the boundary condition (b) in equation (1); we have:

u = u_{max}(Ay^2+By+C) \\ \\ 0 = u_{max}(A*h^2+B*h+C) \\ \\ 0 = Ah^2 +Bh + C \\ \\ 0 = Ah^2 +Bh + 0 \\ \\ Bh = - Ah^2 \\ \\ B = - Ah   \ \ \ \ \   --- (d)

Replacing the boundary condition (c) in equation (1); we have:

u = u_{max}(Ay^2+By+C) \\ \\ u_{max}= u_{max}(A*(\frac{h^2}{2})+B*\frac{h}{2}+C) \\ \\ 1 = \frac{Ah^2}{4} +B \frac{h}{2} + 0 \\ \\ 1 =  \frac{Ah^2}{4} + \frac{h}{2}(-Ah)  \\ \\ 1=  \frac{Ah^2}{4}  - \frac{Ah^2}{2}  \\ \\ 1 = \frac{Ah^2 - Ah^2}{4}  \\ \\ A = -\frac{4}{h^2}

replacing A = -\frac{4}{h^2} for A in (d); we get:

B = - ( -\frac{4}{h^2})hB = \frac{4}{h}

replacing the values of A, B and C into the velocity profile expression; we have:

u = u_{max}(Ay^2+By+C) \\ \\ u = u_{max} (-\frac{4}{h^2}y^2+\frac{4}{h}y)

To determine the volume flow rate; we have:

Q = AV \\ \\ Q= \int\limits^h_0 (u.bdy)

Replacing u_{max} (-\frac{4}{h^2}y^2+\frac{4}{h}y) \ for \ u

\frac{Q}{b} = \int\limits^h_0 u_{max}(-\frac{4}{h^2} y^2+\frac{4}{h}y)dy \\ \\  \frac{Q}{b} = u_{max}  \int\limits^h_0 (-\frac{4}{h^2} y^2+\frac{4}{h}y)dy \\ \\ \frac{Q}{b} = u_{max} (-\frac{-4}{h^2}\frac{y^3}{3} +\frac{4}{h}\frac{y^2}{y})^ ^ h}}__0  }} \\ \\ \frac{Q}{b} =u_{max} (-\frac{-4}{h^2}\frac{h^3}{3} +\frac{4}{h}\frac{h^2}{y})^ ^ h}}__0  }} \\ \\ \frac{Q}{b} = u_{max}(\frac{-4h}{3}+\frac{4h}2} ) \\ \\ \frac{Q}{b} = u_{max}(\frac{-8h+12h}{6}) \\ \\ \frac{Q}{b} =u_{max}(\frac{4h}{6})

\frac{Q}{b} = u_{max}(\frac{2h}{3}) \\ \\ \frac{Q}{b} = \frac{2}{3} u_{max} h

Thus; the volume flow rate per unit depth is:

\frac{Q}{b} = \frac{2}{3} u_{max} h

Consider the discharge ;

Q = VA

where :

A = bh

Q = Vbh

\frac{Q}{b}= Vh

Also;  \frac{Q}{b} = \frac{2}{3} u_{max} h

Then;

\frac{2}{3} u_{max} h = Vh \\ \\ \frac{V}{u_{max}}=\frac{2}{3}

Thus; the ratio is : \frac{V}{u_{max}}=\frac{2}{3}

You might be interested in
A 179 ‑turn circular coil of radius 3.95 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicu
suter [353]

Answer:

The energy, that is dissipated in the resistor during this time interval is 153.6 mJ

Explanation:

Given;

number of turns, N = 179

radius of the circular coil, r = 3.95 cm = 0.0395 m

resistance, R = 10.1 Ω

time, t = 0.163 s

magnetic field strength, B = 0.573 T

Induced emf is given as;

emf= N\frac{d \phi}{dt}

where;

ΔФ is change in magnetic flux

ΔФ  = BA = B x πr²

ΔФ  = 0.573 x π(0.0395)² = 0.002809 T.m²

emf = N\frac{d \phi}{dt} = 179(\frac{0.002809}{0.163} ) = 3.0848 \ V

According to ohm's law;

V = IR

I = V / R

I = 3.0848 / 10.1

I = 0.3054 A

Energy = I²Rt

Energy = (0.3054)² x 10.1 x 0.163

Energy = 0.1536 J

Energy = 153.6 mJ

Therefore, the energy, that is dissipated in the resistor during this time interval is 153.6 mJ

6 0
3 years ago
How do you solve this. I dont know how so I need steps if you dont mind
galben [10]

Explanation:

all I know is every number that have a bar on is equal to one

4 0
2 years ago
Most of the work that engineers do with fluids occurs in nature. True False
zlopas [31]
True depending the jobs
3 0
3 years ago
Identify the right components for gsm architecture that consists of the hardware or physical equipment such as digital signal pr
sergiy2304 [10]

The right components for gsm architecture that consists of the hardware or physical equipment such as digital signal processors, radio transceiver, display, battery, case and sim card is the Mobile station.

<h3>What are the 4 main components?</h3>

In GSM, a cell station includes 4 fundamental additives: Mobile termination (MT) - gives not unusualplace features consisting of: radio transmission and handover, speech encoding and decoding, blunders detection and correction, signaling and get right of entry to to the SIM. The IMEI code is connected to the MT.

Under the GSM framework, a cell tele cell smartphone is called a Mobile Station and is partitioned into  wonderful additives: the Subscriber Identity Module (SIM) and the Mobile Equipment (ME).

Read more about the mobile station:

brainly.com/question/917245

#SPJ4

6 0
2 years ago
I gave 15 min to finish this java program
lisov135 [29]

Answer:

class TriangleNumbers

{

public static void main (String[] args)

{

 for (int number = 1; number <= 10; ++number) {

  int sum = 1;

  System.out.print("1");

  for (int summed = 2; summed <= number; ++summed) {

   sum += summed;

   System.out.print(" + " + Integer.toString(summed));

  }

  System.out.print(" = " + Integer.toString(sum) + '\n');

 }

}

}

Explanation:

We need to run the code for each of the 10 lines. Each time we sum  numbers from 1 to n. We start with 1, then add numbers from 2 to n (and print the operation). At the end, we always print the equals sign, the sum and a newline character.

4 0
3 years ago
Other questions:
  • Phil decided to rescue Bobo the Dancing Bear from a traveling circus that was closing its business. Although Bobo was a well-beh
    12·1 answer
  • How do batteries and other types of power sources make physical computing systems more mobile?
    15·2 answers
  • What are factor of safety for brittle and ductile material
    5·1 answer
  • Water is pumped from a lower reservoir to a higher reservoir by a pump that provides 20 kW of shaft power. The free surface of t
    14·1 answer
  • Saturated liquid water at 150 F is put under pressure to decrease the volume by 1% while keeping the temperature constant. To wh
    8·1 answer
  • Consider the gas carburizing of a gear of 1018 steel (0.18 wt %) at 927°C (1700°F). Calculate the time necessary to increase the
    12·1 answer
  • A piston–cylinder assembly contains air, initially at 2 bar, 300 K, and a volume of 2 m3. The air undergoes a process to a state
    12·1 answer
  • Which of the following activities can help expand engineers' creative thinking capabilities?
    11·2 answers
  • The Accenture team is involved in helping a client in the transformation journey using Cloud computing. How is myNav beneficial
    6·1 answer
  • -Electronic control modules can easily evaluate the voltage and current levels of circuits to which they are connected and deter
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!