1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
3 years ago
12

Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d

ue to friction, the rate of entropy generation in the pipe is?
Engineering
1 answer:
Gennadij [26K]3 years ago
3 0

Answer:

23 W/K

Explanation:

Entropy of water at 15°C is 224.5 J/kg/K.

Entropy of water at 15.2°C is approximately 227.4 J/kg/K (interpolated).

The increase in entropy is therefore:

227.4 J/kg/K − 224.5 J/kg/K = 2.9 J/kg/K.

So the rate of entropy generation is:

2.9 J/kg/K × 8 kg/s = 23.2 W/K

Rounded to two significant figures, the rate is 23 W/K.

You might be interested in
Only an outer panel is being replaced. Technician A says that removing the spot welds by drilling through both panels allows the
Angelina_Jolie [31]

Answer:

6e66363636633747747363637737373737337374

5 0
3 years ago
The steel 4140 steel contains 0.4% C, however, it shows higher yield strength and ultimate strength than that of the 1045 (0.45%
Aleonysh [2.5K]

Answer:

4140 steel contains 0.4% C  having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C

Explanation:

we have given 4140 steel contains 0.4% C

we know here that 4140 steel is low steel alloy , and it have low amount of chromium , manganese etc alloying element

and these elements which are present in 4140 steel they increase yield strength and ultimate strength of steel

while in 1045 steel contains 0.45 % c is plain carbon steel

and it do not contain any alloying element

so that 4140 steel contains 0.4% C  having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C

4 0
3 years ago
Find the Rectangular form of the following phasors?
almond37 [142]

Answer:

The angles are missing in the question.

The angles are :

45,     30,    60,     90,    -34,     -56,      20,     -42,  -65,    -15

P=10, P=5,  P=25, P=54, P=65, P=95, P=250, P=8, P=35, P=150

Explanation:

1. P = 10,   θ = 45°  rectangular coordinates

x = r cosθ  ,   y = r sinθ

So, rectangular form is x + iy

x = P cosθ = 10 cos 45°

  = 7.07

y =P sinθ = 10 sin 45°

  = 7.07

Therefore, rectangular form

x + iy = 7.07 + i (7.07)

2. P = 5 , θ = 30°

x = 5 cos  30° = 4.33

y = 5 sin  30° = 2.5

So, (x+iy) = 4.33 + i (2.5)

3. P = 25 , θ = 60°

x = 25 cos  60° = 12.5

y = 25 sin  60° = 21.65

So, (x+iy) = 12.5 + i (21.65)

4. P = 54 , θ = 90°

x = 54 cos  90° = 0

y = 54 sin  90° = 54

So, (x+iy) = 0+ i (54)

5. P = 65 , θ = -34°

x = 65 cos  (-34°) = 53.88

y = 65 sin  (-34°) = -36.34

So, (x+iy) = 53.88 - i (36.34)

6. P = 95 , θ = -56°

x = 95 cos  (-56)° = 53.12

y = 95 sin  (-56)° = -78.75

So, (x+iy) = 53.12 - i (78.75)

7. P = 250 , θ = 20°

x = 250 cos  20° = 234.92

y = 250 sin 20° = 85.5

So, (x+iy) = 234.92 + i (85.5)

8. P = 8 , θ = (-42)°

x = 8 cos  (-42)° = 5.94

y = 8 sin  (-42)° = -5.353

So, (x+iy) = 5.94 - i (5.353)

9. P = 35 , θ = (-65)°

x = 35 cos  (-65)° = 14.79

y = 35 sin  (-65)° = -31.72

So, (x+iy) = 14.79 - i (31.72)

10. P = 150 , θ = (-15)°

x = 150 cos  (-15)° = 144.88

y = 150 sin  (-15)° = -38.82

So, (x+iy) = 144.88 - i (38.82)

6 0
3 years ago
Air within a piston cylinder assembly executes a Carnot refrigeration cycle between hot and cold reservoirs at TH=600 K and TC=3
Nataly [62]

Answer:

See explaination

Explanation:

for a reverse carnot cycle T-S diagram is a rectangle which i have shown

net work for a complete cycle must be equal to net heat interaction.

Kindly check attachment for the step by step solution of the given problem.

5 0
3 years ago
2.) A fluid moves in a steady manner between two sections in a flow
Talja [164]

Answer:

250\ \text{lbm/min}

625\ \text{ft/min}

Explanation:

A_1 = Area of section 1 = 10\ \text{ft}^2

V_1 = Velocity of water at section 1 = 100 ft/min

v_1 = Specific volume at section 1 = 4\ \text{ft}^3/\text{lbm}

\rho = Density of fluid = 0.2\ \text{lb/ft}^3

A_2 = Area of section 2 = 2\ \text{ft}^2

Mass flow rate is given by

m=\rho A_1V_1=\dfrac{A_1V_1}{v_1}\\\Rightarrow m=\dfrac{10\times 100}{4}\\\Rightarrow m=250\ \text{lbm/min}

The mass flow rate through the pipe is 250\ \text{lbm/min}

As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1

m=\rho A_2V_2\\\Rightarrow V_2=\dfrac{m}{\rho A_2}\\\Rightarrow V_2=\dfrac{250}{0.2\times 2}\\\Rightarrow V_2=625\ \text{ft/min}

The speed at section 2 is 625\ \text{ft/min}.

3 0
3 years ago
Other questions:
  • A consultant has proposed that a pulse-jet baghouse with bags that are 15 cm in diameter and 5 m in length. Estimate the net num
    15·1 answer
  • Draw the hierarchy chart and then plan the logic for a program needed by Hometown Bank. The program determines a monthly checkin
    8·1 answer
  • Is someone an engineer that can help me?plz
    11·1 answer
  • A car is traveling at 36 km/h on an acceleration lane to a freeway. What acceleration is required to obtain a speed of 72 km/h i
    12·1 answer
  • 1)A wheel is used to turn a valve stem on a water valve. If the wheel radius is 1 foot and the stem, (axle), radius is .5 inches
    10·1 answer
  • Give five examples of
    14·1 answer
  • Determine the slopes and deflections at points B and C for the beam shown below by the moment-area method. E=constant=70Gpa I=50
    10·1 answer
  • A system samples a sinusoid of frequency 230 Hz at a rate of 175 Hz and writes the sampled signal to its output without further
    9·1 answer
  • 9. What power tool incorporates a set of dies and punches to cut new
    8·1 answer
  • Describe how you would control employee exposure to excessive noise in a mining environment
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!