Answer:
Distillation, heat
Explanation:
Here in this question, we simply want to look at the best options that could fit in the gaps.
We have a mixture of liquids having boiling points which is far from each other.
Whenever we have a mixture of liquids with boiling points far away from each other, the best technique to use in separating them is to use distillation. That is why we have that as the best fit for the first missing gap.
Now, to get the liquids to separate from each other, we shall be needing the heating mantle for the application of heat. This ensures that the mixture is vaporized. After vaporization, the condensing tube will help to condense the vapor of each of the liquids once we reach the boiling point of either of the two.
Kindly note that the liquid with the lower temperature will evaporate first and will be first obtained. In fact after reaching a little above the boiling point of the lower boiling liquid, we can be sure that what we have left in the mixture pot is the second other liquid with the higher boiling point.
Answer:
C₁₀ = 6.3 KN
Explanation:
The catalog rating of a bearing can be found by using the following formula:
C₁₀ = F [Ln/L₀n₀]^1/3
where,
C₁₀ = Catalog Rating = ?
F = Design Load = 2.75 KN
L = Design Life = 1800 rev/min
n = No. of Hours Desired = 10000 h
L₀ = Rating Life = 500 rev/min
n₀ = No. of Hours Rated = 3000 h
Therefore,
C₁₀ = [2.75 KN][(1800 rev/min)(10000 h)/(500 rev/min)(3000 h)]^1/3
C₁₀ = (2.75 KN)(2.289)
<u>C₁₀ = 6.3 KN</u>
Answer:
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Explanation:
Conservation momentum, when ball A strikes Ball B
Where,
M= Mass
V= Velocity
Ma(VA)1+ Mg(Vg)2= Ma(Va)2+ Ma(Vg)2
MV + 0= MVg2
Coefficient of restitution =
e= (Vg)2- (Va)2/(Va)1- (Vg)1
e= (Vg)2- (Va)2/ V-0
Solving equation 1 and 2 yield
(Va)2= V(l-e) /2
(Vg)2= V(l+e)/2
Conservative momentum when ball b strikes c
Mg(Vg)2+Mc(Vc)1 = Mg(Vg)3+Mc(Vc)2
=> M[V(l+e) /2] + 0 = M(Vg)3 + M(Vc) 2
Coefficient of Restitution,
e= (Vc)2 - (Vg)2/(Vg)2- (Vc)1
=> e= (Vc)2 - (Vg)2/V(l+e) /2
Solving equation 3 and 4,
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Answer:
you know what sounds rlly nice? first have you seent he new corvettes? next u should here a nisan gtr. (like tanner foxes)
Explanation:
Answer:
A) i) 984.32 sec
ii) 272.497° C
B) It has an advantage
C) attached below
Explanation:
Given data :
P = 2700 Kg/m^3
c = 950 J/kg*k
k = 240 W/m*K
Temp at which gas enters the storage unit = 300° C
Ti ( initial temp of sphere ) = 25°C
convection heat transfer coefficient ( h ) = 75 W/m^2*k
<u>A) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>
First step determine the Biot Number
characteristic length( Lc ) = ro / 3 = 0.0375 / 3 = 0.0125
Biot number ( Bi ) = hLc / k = (75)*(0.0125) / 40 = 3.906*10^-3
Given that the value of the Biot number is less than 0.01 we will apply the lumped capacitance method
attached below is a detailed solution of the given problem
<u>B) The physical properties are copper</u>
Pcu = 8900kg/m^3)
Cp.cu = 380 J/kg.k
It has an advantage over Aluminum
C<u>) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>
Given that:
P = 2200 Kg/m^3
c = 840 J/kg*k
k = 1.4 W/m*K