Answer:
the two defects of a simple cell are:
1. Polarization
2. Local action
1. So you can complete the things you NEED to do faster. (I.e work, groceries)
2. So it’s easier for you to do leisure activities. (I.e visiting friends, shopping)
Answer:
Explanation:
Diffusion flux of a gas, J is given by
where
is permeability coefficient,
P is pressure difference and x is thickness of membrane.
The pressure difference will be 10,000 Pa- 3000 Pa= 7000 Pa
At 298 K, the permeability coefficient of water vapour through polypropylene sheet is
Since the thickness of sheet is given as 1mm= 0.1 cm then
Therefore, the diffusion flux is
The correct question;
An object of irregular shape has a characteristic length of L = 1 m and is maintained at a uniform surface temperature of Ts = 400 K. When placed in atmospheric air at a temperature of Tinfinity = 300 K and moving with a velocity of V = 100 m/s, the average heat flux from the surface to the air is 20,000 W/m² If a second object of the same shape, but with a characteristic length of L = 5 m, is maintained at a surface temperature of Ts = 400 K and is placed in atmospheric air at Too = 300 K, what will the value of the average convection coefficient be if the air velocity is V = 20 m/s?
Answer:
h'_2 = 40 W/K.m²
Explanation:
We are given;
L1 = 1m
L2 = 5m
T_s = 400 K
T_(∞) = 300 K
V = 100 m/s
q = 20,000 W/m²
Both objects have the same shape and density and thus their reynolds number will be the same.
So,
Re_L1 = Re_L2
Thus, V1•L1/v1 = V2•L2/v2
Hence,
(h'_1•L1)/k1 = (h'_2•L2)/k2
Where h'_1 and h'_2 are convection coefficients
Since k1 = k2, thus, we now have;
h'_2 = (h'_1(L1/L2)) = [q/(T_s - T_(∞))]• (L1/L2)
Thus,
h'_2 = [20,000/(400 - 300)]•(1/5)
h'_2 = 40 W/K.m²