D - tertiary consumer
This is because it is the farther up to food chain.
When light travels from a medium with higher refractive index to a medium with lower refractive index, there is a critical angle after which all the light is reflected (so, there is no refraction).
The value of this critical angle can be derived by Snell's law, and it is equal to

where n2 is the refractive index of the second medium and n1 is the refractive index of the first medium.
In our problem, n1=1.47 and n2=1.33, so the critical angle is
The inner planets are rocky and have diameters of less than 13,000 kilometers. The outer planets include Jupiter, Saturn, Uranus, and Neptune. The smaller, inner planets include Mercury, Venus, Earth, and Mars. Inner planet's atmosphere is thin. (Mercury has no atmosphere). Outer Planets: Outer planets' atmosphere is very thick. The four inner planets, Mercury, Venus, Earth, and Mars, are warmer than the outer gas giants. However, the temperature of the planets does not follow a linear path from the Sun.
Hope this helps!
Please give Brainliest!
3. Kinetic energy
4. Potential energy
5. Kinetic energy because it’s moving towards the waterfall otherwise there wouldn’t be a waterfall.
6. Kinetic energy
7. Kinetic energy
8. Potential energy
9. Potential energy
10. Kinetic energy
After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4