1)
Answer:
Part 1)
H = 30.6 m
Part 2)
t = 2.5 s
Part 3)
t = 2.5 s
Part 4)

Explanation:
Part 1)
initial speed of the ball upwards

so maximum height of the ball is given by



Part 2)
As we know that final speed will be zero at maximum height
so we will have



Part 3)
Since the time of ascent of ball is same as time of decent of the ball
so here ball will same time to hit the ground back
so here it is given as
t = 2.5 s
Part 4)
since the acceleration due to earth will be same during its return path as well as the time of the motion is also same
so here its final speed will be same as that of initial speed
so we have

2)
Answer:
a = 9.76 m/s/s
Explanation:
As we know that the object is released from rest
so the displacement of the object in vertical direction is given as



3)
Answer:
v = 29.7 m/s
Explanation:
acceleration of the rocket is given as

time taken by the rocket
t = 0.33 min
final speed of the rocket is given as



4)
Answer:
Part 1)
y = 25.95 m
Part 2)
d = 6.72 m
Explanation:
Part 1)
As it took t = 2.3 s to hit the water surface
so here we will have



Part 2)
Distance traveled by it in horizontal direction is given as



4
Every current through a wire produced a magnetic field. And since the magnetic field of Earth is weak, it will get attracted towards the wire.
Radiation fog is the fog that is formed when the heat absorbed the Earth's surface is released into the atmosphere producing fog. This only occurs when the air is clear and calm. In the center of an anticyclone, the conditions of the air are clear and calm which is favorable for the formation of radiation fog. The center of cyclones, on the other hand, is turbulent and cloudy which prevents the formation of radiation fogs.
Answer:
115 kPa
Explanation:
Use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Assuming no elevation change, h₁ = h₂.
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
Plugging in values:
(582,000 Pa) + ½ (1000 kg/m³) (1.28 m/s)² = P + ½ (1000 kg/m³) (30.6 m/s)²
P = 115,000 Pa
P = 115 kPa