There must be a centripetal force to move the object move in a curve path.

<h2><em>calculate</em></h2>
<em>
</em>
<h2><em>reduce </em><em>the </em><em>numbers</em></h2>
<em>
</em>
<h2><em>multiply</em></h2>
<em>
</em>
<h2><em>there </em><em>for </em><em>we </em><em>have </em><em>a </em><em>solution</em><em> to</em><em> the</em><em> </em><em>equation</em></h2>
<em>hope </em><em>it</em><em> helps</em>
<em>#</em><em>c</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>on</em><em> learning</em>
<em>mark </em><em>me</em><em> as</em><em> brainlist</em><em> plss</em>
Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh
The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)
:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️
Explanation:
Answer:
The moment of a given force about a given axis of rotation can be decreased by decreasing the perpendicular distance of force from the axis of rotation.