Answer:
2.4s
Explanation:
The length of the pendulum = 75ft
Diameter d = 12 inches
The time period of the pendulum is given as
T = 2pi(L/g)^1/2
Then the time it takes to move from displacement to equilibrium is given as:
t = T/4
= (Pi/2)*(L/g)^1/2
= pi/2 x [(75x0.3048)/9.81]^0.5
= 1.57x[22.86/9.81)^0.5
= 2.4s
2.4 seconds is the least amount of time that it would take.
Answer: It opposes the flow of electrons.
Explanation: just did the quiz on
We can use the equation of state for an ideal gas to answer the question:

or, by rewriting it,

where p is the gas pressure, V its volume, T its temperature, n the number of moles of the gas and R the gas constant.
When the gas is sprayed from the can into the room, its volume V has increased, while n (the number of moles of the gas) stayed the same. Since R is a constant and the temperature T also stayed constant, if we look at the formula we see that the numerator didn't change, while the denominator (V) has increased, so the pressure of the gas has decreased.