Answer:
See Explanation
Explanation:
Solution:-
Earthquakes happen when rock below the Earth's surface moves abruptly. Usually, the rock is moving along large cracks in Earth's crust called faults. Most earthquakes happen at or near the boundaries between Earth's tectonic plates because that's where there is usually a large concentration of faults. Some faults crack through the Earth because of the stress and strain of the moving plates. Other, large faults are the boundary between plates, such as the San Andreas Fault on the North American west coast.
Since earthquakes happen along faults and most faults are near plate boundaries, the yellow dots in the animation are found mostly at the boundaries between Earth's tectonic plates.
A subduction zone is the biggest crash scene on Earth. These boundaries mark the collision between two of the planet's tectonic plates. The plates are pieces of crust that slowly move across the planet's surface over millions of years.
Where two tectonic plates meet at a subduction zone, one bends and slides underneath the other, curving down into the mantle. (The mantle is the hotter layer under the crust.)
Tectonic plates can transport both continental crust and oceanic crust, or they may be made of only one kind of crust. Oceanic crust is denser than continental crust. At a subduction zone, the oceanic crust usually sinks into the mantle beneath lighter continental crust. (Sometimes, oceanic crust may grow so old and that dense that it collapses and spontaneously forms a subduction zone, scientists think.)
The answer:
the full question is as follow:
<span>A Texas rancher wants to fence off his four-sided plot of flat land. He measures the first three sides, shown as A, B, and C in Figure below , where A = 4.90 km and θC = 15°. He then correctly calculates the length and orientation of the fourth side D. What is the magnitude and direction of vector D?
As shown in the figure,
A + B + C + D = 0, so to find the </span>magnitude and direction of vector D, we should follow the following method:
D = 0 - (A + B + C) ,
let W = - (A + B + C), so the magnitude and direction of vector D is the same of the vector W characteristics
Magnitude
A + B + C = <span> (4.90cos7.5 - 2.48sin16 - 3.02cos15)I</span>
<span>+ (-4.9sin7.5 + 2.48cos16 + 3.02sin15)J
</span>= 1.25I +2.53J
the magnitude of W= abs value of (A + B + C) = sqrt (1.25² + 2.53²)
= 2.82
the direction of D can be found by using Dx and Dy value
we know that tan<span>θo = Dx / Dy = 1.25 / 2.53 =0.49
</span>tanθo =0.49 it implies θo = arctan 0.49 = 26.02°
direction is 26.02°
Answer:
1. 18.5m/s
2. 17.5 m
3. 0 at its highest point
4. Direction is downwards
Explanation:
1. This egg is thrown vertically from a height
Yo = 0. This egg then falls to the point y = -30.0 at t = 5seconds
Y-Yo = V0t - 1/2gt²
-30-0 = V0(5)-1/2(9.8)(5²)
-30 = 5v0 - 4.9x25
-30 = 5V0 - 122.5
-30+122.4 = 5v0
V0 = 92.5/5
= 18.5m/s
<em><u>this </u></em><em><u>is </u></em><em><u>the </u></em><em><u>initial</u></em><em><u> </u></em><em><u>speed</u></em><em><u> of</u></em><em><u> the</u></em><em><u> </u></em><em><u>egg</u></em>
2. When the egg is at a maximum height it would have a velocity equal to 0
V² = V0² - 2*g*y
V = 0, V0 = 18.5, g = 9.8
0 = 18.5²-2x9.8*y
342.25-19.6y = 0
342.25 = 19.6y
Divide through by 19.6
Y = 342.25/19.6
Y = 17.5m
<em><u>this value is how high it rises above starting point</u></em>
3.
The magnitude of velocity is = 0 at its highest point
4.
This egg falls under gravity. Therefore the acceleration due to gravity has a constant magnitude and direction. Magnitude = 9.8m/s and it's direction is downwards.
5. Please check attachment for graph
again CORRECT ans is 4) light strikes the grooves → different wavelengths of light bend at different angles → diffracted wavelengths reach the eyes → the eyes see different colors.
moderator - plz review the ans as u deleted my right ans n approved the wrong ans :(