1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the
and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:

Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:


It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.
Hey There,
Question: "<span>A student gives a brief push to a block of dry ice. A moment later, the block moves across a very smooth surface at a constant speed. When drawing the free body diagram for the block of dry ice moving at a constant speed, the forces that should be included are: (select all that apply)"
Answer: C. Force Of Friction
B. Force
If This Helps May I Have Brainliest?</span>
Answer:
you would be better off if the car bounced backwards
Explanation:
because if the hood was dismembered than you have a high chance of very bad injury but if it is just bounced back you would have less chance of getting hurt if properly sitting and seat belted.
The answer is A: Core --> Mantle --> Crust.
Core: The earth's core is the center of the earth, which would ultimately be the deepest. The core is made up of alloy, which is a mixture of many medals, such as iron and nickel.
Mantle: The earth's mantle is the layer between the earths crust and core. Often made of silicate rocks.
Crust: The earth's crust is the outer-most of the three options. Usually made of up different types of rocks.