If alpha and beta are the zeroes of quadratic polynomial ax^2+bx+c , then find alpha^4+beta^4
1 answer:
Ill write A for alpha and B for beta.
AB = c/a and A + B = -b/a
A^4 + B^4 = (A^2 + B^2)^2 - 2A^2B^2
= [(A + B)^2 - 2AB] ^2 - 2A^2B^2
Plugging in the values for A+B and AB we get
A^4 + B^4 = [(-b/a)^2 - 2c/a]^2 - 2(c/a)^2
= (b^2 / a^2 - 2c / a)^2 - 2c^2/a^2
= (b^2 - 2ac)^2 - 2c^2
---------------- -----
a^4 a^2
= (b^2 - 2ac)^2 - 2a^2c^2
-----------------------------
a^4
You might be interested in
ofc i can help! hold up m y mom is vcalling
Answer:
Step-by-step explanation:
Can you upload another picture?
35-4x>2
-4x>2-35
-4x>-33
-x>-33/4
x<33/4 (x<8.25)
Solution: x<8.25. or x∈(-∞ , 8.25)
So the side length became 0.6*5 = 3 cm.