Answer:
- x = log(y/4)/log(1.0256)
- your answer for y=12 is correct
Step-by-step explanation:
The question is asking you to solve ...
y = f(x)
for x. (In other words, find the inverse function.)
You already did this using a constant for y. Do the same thing with y instead of the constant.
y = 4(1.0256^x)
y/4 = 1.0256^x . . . . . . . divide by 4
log(y/4) = x·log(1.0256) . . . . . take logs
log(y/4)/log(1.0256) = x . . . . . divide by the coefficient of x
Now, you have a model for x in terms of y, which is what the question is asking for.
x = log(y/4)/log(1.0256) . . . . . . . exact expression
When y=12, this is ...
x = log(12/4)/log(1.0256) ≈ 43.46 . . . . weeks
_____
This is a linear equation in log(y), so can be written as such:
x = 91.0912·log(y) -54.8424 . . . . . approximate expression
For this case we have that by definition, the point-slope equation of a line is given by:

Where:
m: It's the slope
b: It is the cut-off point with the y axis
We have two points:

We found the slope:

Thus, the equation is of the form:

We substitute one of the points and find "b":

Finally, the equation is:

Answer:

1400kg.
Force=ma
2100N= m*1.5
2100/1.5= 1400kg.
Please mark me brainliest :)
A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.
<h3>¿Cómo determinar la medida de un lado de un triángulo desconocido?</h3>
En este problema tenemos un sistema formado por dos triángulos <em>similares</em>, la semejanza entre los dos triángulos se debe a la colinealidad entre los segmentos de línea AP' (triángulo <em>pequeño</em>) y AP'' (triángulo <em>grande</em>), así como de los lados AM y AB, así como los lados AN y AC, así como los <em>mismos</em> ángulos en la <em>misma</em> distribución. (Semejanza Lado - Ángulo - Lado)
En consecuencia, obtenemos las siguientes proporciones:
AP'/AP'' = MN/BC = 1/2 (1)
Finalmente, la proporción entre el triángulo AMN y el cuadrilátero BMNC es:


A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.
Para aprender sobre triángulos semejantes: brainly.com/question/21730013
#SPJ1
A numerical quality that is not a whole number.