Answer:
0.203 is the mean of the concentration of the HCl solution
Explanation:
You have 5 concentrations. The most appropiate result is the mean of those results. The mean is a statistical defined as the sum of each result divided by the total amount of results. For the results of the problem, the mean is:
0.210 + 0.204 + 0.201 + 0.202 + 0.197 = 1.014 / 5 =
<h3>0.203 is the mean of the concentration of the HCl solution</h3>
Answer:
19 g
Explanation:
Data Given:
Sodium Chloride (table salt) = 50 g
Amount of sodium (Na) = ?
Solution:
Molecular weight calculation:
NaCl = 23 + 35.5
NaCl = 58.5 g/mol
Mass contributed by Sodium = 23 g
calculate the mole percent composition of sodium (Na) in sodium Chloride.
Since the percentage of compound is 100
So,
Percent of sodium (Na) = 23 / 58.5 x 100
Percent of sodium (Na) = 39.3 %
It means that for ever gram of sodium chloride there is 0.393 g of Na is present.
So,
for the 50 grams of table salt (NaCl) the mass of Na will be
mass of sodium (Na) = 0.393 x 50 g
mass of sodium (Na) = 19 g
<span>d. tightly packed particles</span>
Can you reword it im confused
a) 1 mole of Ne
b) i/2 mole of Mg
c) 1570 moles of Pb.
d) 2.18125*10^-13 moles of oxygen.
Explanation:
The number of moles calculated by Avogadro's number in 6.23*10^23 of Neon.
6.23*10^23= 1/ 6.23*10^23
= 1 mole
The number of moles calculated by Avogadro's number in 3.01*10^23 of Mg
3.2*10^23=1/6.23*10^23
= 1/2 moles of Pb.
Number of moles in 3.25*10^5 gm of lead.
atomic weight of Pb=
n=weight/atomic weight
= 3.25*10^5/ 207
= 1570 moles of Pb.
Number of moles 4.50 x 10-12 g O
number of moles= 4.50*10^-12/16
= 2.18125*10^-13 moles of oxygen.