Answer : The [α] for the solution is, -118.8
Explanation :
Enantiomeric excess : It is defined as the difference between the percentage major enantiomer and the percentage minor enantiomer.
Mathematically,

Given:
% major enantiomer = 86 %
% minor enantiomer = 14 %
Putting values in above equation, we get:


Now we have to calculate the [α] for the solution.
![[\alpha]=\text{Enantiomer excess}\times [\alpha]_{Pure}](https://tex.z-dn.net/?f=%5B%5Calpha%5D%3D%5Ctext%7BEnantiomer%20excess%7D%5Ctimes%20%5B%5Calpha%5D_%7BPure%7D)
![[\alpha]=0.72\times -165](https://tex.z-dn.net/?f=%5B%5Calpha%5D%3D0.72%5Ctimes%20-165)
![[\alpha]=-118.8](https://tex.z-dn.net/?f=%5B%5Calpha%5D%3D-118.8)
Thus, the [α] for the solution is, -118.8
Answer:
3) Warm Temperatures and High pressures
Explanation:
This is the typical characteristic of southern air masses moving north
No, don't try, it will explode close to 187 kPa
Answer: Be= 2, C =4, Li = 1 and B=3
Explanation:
The valence shell can be define as the outermost shell of an atom that contains the valence electrons.
Beryllium (Be), electronic configuration; 1s2 2s2, = 2 electrons in its valence shell.
Carbon (C), electronic configuration; 1s2 2s2 2p2, = 4 electrons in its valence shell.
Lithium (Li), electronic configuration; 1s2 2s1 = 1 electron in its valence shell.
Boron (B) , electronic configuration; 1s2 2s2 2p1 = 3 electron in its valence shell.
Answer:
The answer will be 2.98K
Explanation:
Using the formula:
Q = mc∆T
Q= 5,800 (heat in joules)
m= convert 15.2kg to g which is 15200g (mass in grams)
c= 0.128 J/g °c (Specific heat capacity)
∆T= what we need to find (temperature change)
5800J = 15200g x 0.128 x ∆T
= 2.98K