Answer:
57.05
Explanation: the formula is...
length x width x height
IDensity is calculated by mass divided by volume. As you half the Hershey bar, mass and volume change by the same proportion. Therefore, density is the same.
Answer: The energy from sunlight drives the reaction of carbon dioxide and water molecules to produce sugar and oxygen, as seen in the chemical equation for photosynthesis.
Explanation:
Answer:
CHO2- ion
Explanation:
We have the lewis structure of a formate-ion here
This is CHO2-.
The carbon atom is the central atom in the structure. It's the least electronegative atom (C). Carbon has 4 valence electrons. Oxygen has 6 valence electrons.
The carbon will bind with 1 hydrogen atom, this will form 1 single bond, because hydrogen has 1 valence electron.
The carbon will bind with oxygen via a double bond.
Since carbon has only 4 valence electrons, it can only form 1 bond with the other oxygen atom.
There will formed 1 double bond between C and O and 1 single bond between C and O resulting in a negative charged O-atom.
This means there are two resonance structures. for the CHO2- ion
We know that the electron clouds of two atoms overlapping is a bond, because that signifies that the electrons are being shared in a bond.
So, I'm going to go through some definitions of these different types of bonds, because they have very specific circumstances.
<u>A hydrogen bond is a bond between an electronegative atom and a hydrogen molecule</u> (which is not what this question says, this isn't stated anywhere).
<u>A dipole is a difference in electron density on two different atoms</u> (so this isn't even close to what the question is stating, a dipole is not even a bond)
<u>An ionic bond is an </u><u><em>unequal sharing of electrons</em></u><u> between two atoms </u>(because the question doesn't state this specific fact, then it can't be this option).
By process of elimination, we know the answer is covalent bond, but just in case, we can also look at the definition of a covalent bond: <u>a bond that involves the sharing of electrons between atoms.</u>
That is exactly what the question is asking for! Therefore, your answer is d. covalent bond