To figure out questions related to reacting moles/masses, the first step is always to write a complete balanced equation.
2Fe (s) + 3Cl2 (g) → 2FeCl3 (s)
Since Cl2 is the excess reactant, and Fe is the limiting reactant, we can simply find the number of moles of the product by comparing the mole ratio of the limiting reactant to the mole ratio of the product from the equation.
From the equation, mole ratio of Fe:FeCl3 = 2:2 = 1:1, the number of moles of product is exactly the same as the number of moles of the limiting reactant, which makes it 8 moles.
Note that if the mole ratio is not 1:1, you have to do some calculations to make sure the no. of moles is balanced at the end. Which means, if the mole ratio happened to be 1:2, the no. of moles of the product would be 8x2=16 instead.
So, your answer is 8 moles.
Iodine-131 is one of the most important isotopes used in the diagnosis of thyroid cancer. One atom has a mass of <u>130.906114</u> amu.\
<h3>What is
thyroid cancer?</h3>
Cancer that originates in the tissues of the thyroid gland is known as thyroid cancer. It is a condition where cells develop improperly and are susceptible to spreading to different bodily regions. A bump in the neck or swelling are examples of symptoms. Thyroid cancer is not always diagnosed because it can move from other parts of the body to the thyroid.
Young age radiation exposure, having an enlarged thyroid, and family history are risk factors. Papillary thyroid cancer, follicular thyroid cancer, medullary thyroid cancer, and anaplastic thyroid cancer are the four primary kinds. Ultrasound and tiny needle aspiration are frequently used in diagnosis. As of right now, it is not advised to screen those who are healthy and at normal risk for the disease.
To learn more about thyroid cancer from the given link:
brainly.com/question/11880360
#SPJ4
Answer:
A lunar eclipse can only happen during a full moon.
Hope I helped :)
Explanation: