Potential energy is the answer
The first one is electrical energy
Answer:
71 % of the earth's surface is covered in water
Answer:
The velocity of the Mr. miles is 17.14 m/s.
Explanation:
It is given that,
Mr. Miles zips down a water-slide starting at 15 m vertical distance up the scaffolding, h = 15 m
We need to find the velocity of the Mr. Miles at the bottom of the slide. It is a case of conservation of energy which states that the total energy of the system remains conserved. Let v is the velocity of the Mr. miles. So,

g is the acceleration due to gravity

v = 17.14 m/s
So, the velocity of the Mr. miles is 17.14 m/s. Hence, this is the required solution.
Answer:
C) 40 N/m
Explanation:
If we ASSUME that the spring is un-stretched at the zero cm position
k = F/Δx = 10/0.25 = 40 N/m