The answer is A. The outer lines change as it moves
Answer:
No
Explanation:
The rate at which solids expand when heated depends on the substance. Metals tend to have higher rates of expansion (per degree change in temperature) than non-metal solids, but there is variation even among metals. A table of expansion coefficients can be found here or here.
'In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy' is true for transverse waves only.
'In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy' is true for longitudinal waves only.
'Many wave motions in nature are a combination of longitudinal and transverse motion' is true for both longitudinal and transverse waves.
<u>Explanation:</u>
Longitudinal waves are those where the direction of propagation of particles are parallel to the medium' particles. While transverse waves propagate perpendicular to the medium' particles.
As wave motions are assumed to be of standing waves which comprises of particles moving parallel as well as perpendicular to the medium, most of the wave motions are composed of longitudinal and transverse motion.
So the option stating the medium' particle moves perpendicular to the direction of the energy flow is true for transverse waves. Similarly, the option stating the medium' particle moves parallel to the direction of flow of energy is true for longitudinal waves only.
And the option stating that wave motions comprises of combination of longitudinal and transverse motion is true for both of them.
Answer:
0.196 m
Explanation:
Given in the question that,
time taken by the dolphin to go back to water = 0.2 sec
To solve the question we will use Newton's Law of motion
<h3>S = ut + 0.5(a)t²</h3>
here S is distance covered
u is initial speed
a = acceleration due to gravity
t = time taken
Plug value in the equation above
S = 0(0.2) + 0.5(-9.8)(0.2)²
S = 0.5(-9.8)(0.2)²
S = -0.196 m
Negative sign represent direction
(Assuming that dolphin have a vertical straight jump not a projectile motion)