Answer:
Step-by-step explanation:
A = LW + ½πr²
A = 15(12) + ½(3.14)(12²/4)
A = 180 + 56.52
A = 236.52 m²
The median triangle is a line segment that connects the vertex and the midpoint of the opposite side. Therefore, in the given, we can say that RS = QS
Equating RS and QS, we will find the value of X
RS = QS
5x-11 = 2x+7
5x-2x = 7+11 ⇒ combine like terms
3x = 18 ⇒ divide both sides by 3 to get the x value
x = 6
Find the value of RS and QS, in this, we will show that two are equal
5(6)-11 = 2(6)+7
19 = 19 ⇒ correct
Therefore RQ is the sum of RS and QS or simply twice the length of either segment
RQ = 19 x 2 = 19 + 19 = 38 (D)
Step-by-step explanation:
<h2>13. </h2>

<h2>14.</h2>

<h2>15.</h2>
![\implies\sf{ {x}^{3} = 216 } \\ \\ \implies\sf{ x = \sqrt[3]{216} } \\ \\ \implies\sf{ x = 6 }](https://tex.z-dn.net/?f=%20%20%5Cimplies%5Csf%7B%20%7Bx%7D%5E%7B3%7D%20%3D%20216%20%7D%20%5C%5C%20%20%5C%5C%20%20%5Cimplies%5Csf%7B%20x%20%3D%20%20%20%5Csqrt%5B3%5D%7B216%7D%20%20%7D%20%20%20%5C%5C%20%20%5C%5C%20%5Cimplies%5Csf%7B%20x%20%3D%20%206%20%7D%20%20)