Answer:
λ_A = 700 nm
, m_B = m_a 2
Explanation:
The expression that describes the diffraction phenomenon is
a sin θ = m λ
where a is the width of the slit, lam the wavelength and m an integer that writes the order of diffraction
a) They tell us that now lal_ A m = 1
a sin θ = λ_A
coincidentally_be m = 2
a sin θ = m λ_b
as the two match we can match
λ _A = 2 λ _B
λ_A = 2 350 nm
λ_A = 700 nm
b)
For lam_B
a sin λ_A = m_B λ_B
For lam_A
a sin θ_A = m_ λ_ A
to match they must have the same angle, so we can equal
m_B λ_B = m_A λ_A
m_B = m_A λ_A / λ_B
m_b = m_a 700/350
m_B = m_a 2
Acceleration is F/M so the answer would be 12m/s^2
I'd say you haven't given us enough information to answer that.
When we talk about "change of state", we're talking about changes
between solid, liquid, and gas.
Tell us what the state of the water is, and what the states of the
hydrogen and oxygen are after the split, and we'll be able to
summarize the changes of state that may be taking place.
Answer:
Explanation:
What we are basically looking for here is how long it takes the first stone to hit the water. We have everything we need to figure that out. We will use the equation
Δx = . Filling in, we will solve for t, the time is takes the first stone to hit the water (which is the same for both since they both hit the water at the same time):
which is a quadratic that we will have to factor. Get it into standard form, setting it equal to 0:
and factor to get that
t = 3.2 s and t = -2.8 s
Since time can't ever be negative, it takes 3.2 s for the stones to hit the water.