Answer:
theoretical fracture strength = 16919.98 MPa
Explanation:
given data
Length (L) = 0.28 mm = 0.28 × 10⁻³ m
radius of curvature (r) = 0.002 mm = 0.002 × 10⁻³ m
Stress (s₀) = 1430 MPa = 1430 × 10⁶ Pa
solution
we get here theoretical fracture strength s that is express as
theoretical fracture strength =
.............................1
put here value and we get
theoretical fracture strength =
theoretical fracture strength =
theoretical fracture strength = 16919.98 MPa
Answer:
0.
Explanation:
To find the electrical force per unit area on each sheet we start defining our variables,



We find the electric field for each one, this formula is given by,

Substituting each value from the three charged sheets, we have



The electric field is



Force on each sheet is,


The total force is 0
Answer:
It really depends on what you want it to do. I would make one that does chores around the house so I don't have to.
Explanation:
Answer:
0.2 x 100
Explanation:
Engineering strain is the original crossection/original crossection
cold work percentage is
original crossection/original crossection x 100
Answer:
# Program is written in python
# 22.1 Using the count method, find the number of occurrences of the character 's' in the string 'mississippi'.
# initializing string
Stringtocheck = "mississippi"
# using count() to get count of s
counter = Stringtocheck.count('s')
# printing result
print ("Count of s is : " + str(counter))
# 2.2 In the string 'mississippi', replace all occurrences of the substring 'iss' with 'ox
# Here, we'll make use of replace() method
# Prints the string by replacing iss by ox
print(Stringtocheck.replace("iss", "ox"))
#2.3 Find the index of the first occurrence of 'p' in 'mississippi'
# declare substring
substring = 'p'
# Find index
index = Stringtocheck.find(substring)
# Print index
print(index)
# End of program