Answer:
Para x=0:
Para x=30 cm:
Explanation
Podemos utilizar la ley de Fourier par determinar el flujo de calor:
(1)
Por lo tanto debemos encontrar la derivada de T(x) con respecto a x primero.
Usando la ley de potencia para la derivda, tenemos:

Remplezando esta derivada en (1):
Para x=0:

Para x=30 cm:

Espero que te haya ayudado!
Answer:
1. Equatorial Evergreen or Rainforest
2. Tropical forest
3. Mediterranean forest
4. Temperate broad-leaved forest
5. Warm temperate forest
Explanation:
Answer:
def output_ints_less_than_or_equal_to_threshold(user_values, upper_threshold):
for value in user_values:
if value < upper_threshold:
print(value)
def get_user_values():
n = int(input())
lst = []
for i in range(n):
lst.append(int(input()))
return lst
if __name__ == '__main__':
userValues = get_user_values()
upperThreshold = int(input())
output_ints_less_than_or_equal_to_threshold(userValues, upperThreshold)
Explanation:
are bhai brainly aap english me questions kar ne ko hai
ye kon si bhasha hai ??????
Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW