Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.
Answer:
a)
The crack and connecting rod is used in the design of car.This mechanism is known as slider -crank mechanism.
Components:
1.Inlet tube
2. Wheel
3. Exhaust
4. Engine
5.Air tank
6.Pressure gauge
7.Stand
8. Gate valve
b)
The efficiency of air engine is less as compare to efficiency of electric engine and this is not ecofriendly because it produce green house gases.These gases affect the environment.
c)
it can run around 722 km when it is full charge.
Answer:
The speed of shaft is 1891.62 RPM.
Explanation:
given that
Amplitude A= 0.15 mm
Acceleration = 0.6 g
So
we can say that acceleration= 0.6 x 9.81
We know that
So now by putting the values
We know that
ω= 2πN/60
198.0=2πN/60
N=1891.62 RPM
So the speed of shaft is 1891.62 RPM.
Answer:
0.245 m^3/s
Explanation:
Flow rate through pipe a is 0.4 m3/s Parallel pipes have a diameter D = 30 cm => r = 15 cm = 0.15 m Length of Pipe a = 1000m Length of Pipe b = 2650m Temperature = 15 degrees Va = V / A = (0.4m3/s) / (3.14 (0.15m)^2) = 5.66 m/s h = (f(LV^2)) / D2g (fa(LaVa^2)) / Da2g = (fb(LbVb^2)) / Da2g and Da = Db; fa = fb LaVa^2 = LbVb^2 => La/Lb = Vb^2/Va^2 Vd^2 = Va^2(La/Lb) => Vb = Va(La/Lb)^(1/2) Vb = 5.66 (1000/2650)^(1/2) => 5.66 x 0.6143 = 3.4769 m/s Vb = 3.4769 m/s V = AVb = 3.14(0.15)^2 x 3.4769 m/s = 0.245 m^3/s