An atom. Hope this helped
Answer:
W = 0.060 J
v_2 = 0.18 m/s
Explanation:
solution:
for the spring:
W = 1/2*k*x_1^2 - 1/2*k*x_2^2
x_1 = -0.025 m and x_2 = 0
W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2
W = 0.060 J
the work-energy theorem,
W_tot = K_2 - K_1 = ΔK
with K = 1/2*m*v^2
v_2 = √2*W/m
v_2 = 0.18 m/s
Answer:
Part a)

Part b)

Explanation:
Part a)
For force conditions of two blocks we will have


now from above equations we have


now we know that


now from above equation we have


Part b)
When heavier block is removed and F = 908 N is applied at the end of the string then we have



Law of universal gravitation:
F = GMm/r²
F = gravitational force, G = gravitational constant, M & m = masses of the objects, r = distance between the objects
F is proportional to both M and m:
F ∝ M, F ∝ m
F is proportional to the inverse square of r:
F ∝ 1/r²
Calculate the scaling factor of F due to the change in M:
k₁ = 2M/M = 2
Calculate the scaling factor of F due to the change in m:
k₂ = 2m/m = 2
Calculate the scaling factor of F due to the change in r:
k₃ = 1/(4r/r)² = 1/16
Multiply the original force F by the scaling factors to obtain the new force:
Fk₁k₂k₃
= F(2)(2)(1/16)
= F/4