Answer:
(-2 , 5)
(-1 , 0)
(1 , -4)
(3 , 0)
(4 , -5)
Step-by-step explanation:
<u>First solve the equation:</u>
x² - 2x - 3
<em><u>Find two numbers with have a sum of -2 and a product of -3.</u></em>
-3 and 1
(x - 3)(x + 1)
Solve for x:
x - 3 = 0
x = 3
x + 1 = 0
x = -1
You know that the graph will cross the x-axis at -1 and 3.
(-1 , 0)
(3 , 0)
You know that the graph is positive.
<u>Complete the square to find the vertex</u>
x² - 2x - 3
(x - 1)² = x² - 2 + 1
x² - 2x - 3 = x² - 2 + 1 - 2 = (x - 1)² - 2
1 = 0
x = 1
Substitute into the original equation:
x² - 2x - 3 =
1² - (2 * 1) - 3 =
1 - 2 - 3 =
-4
(1 , -4)
<em><u>You can input any two numbers within -10 and 10. Such as -2 and 4.</u></em>
x² - 2x - 3 =
-2² - (2 * -2) - 3 =
4- -4- 3 =
5
(-2 , 5)
x² - 2x - 3 =
4² - (2 * 4) - 3 =
16 - 8 - 3 =
-5
(4 , -5)
You do not need to use the remainder theorem to find p(3). Just plugin 3 where the x is located in


Answer is a.
Select all the correct answers:
1) Yes
2) No
x=8→h(8)=2(8)^2+5(8)+2=2(64)+40+2=128+40+2→h(8)=170
x=8→f(8)=3^8+2=6,561+2→f(8)=5,563>170=h(8)
3) Yes
4) No
5) Yes
rg=[g(3)-g(2)]/(3-2)=[g(3)-g(2)]/1→rg=g(3)-g(2)
g(3)=20(3)+4=60+4→g(3)=64
g(2)=20(2)+4=40+4→g(2)=44
rg=64-44→rg=20
rf=f(3)-f(2)
f(3)=3^3+2=27+2→f(3)=29
f(2)=3^2+2=9+2→f(2)=11
rf=29-11→rf=18
rh=h(3)-h(2)
h(3)=2(3)^2+5(3)+2=2(9)+15+2=18+15+2→h(3)=35
h(2)=2(2)^2+5(2)+2=2(4)+10+2=8+10+2→h(2)=20
rh=35-20→rh=15
rg=20>18=rf
rg=20>15=rh
6) No
x=4→g(4)=20(4)+4=80+4→g(4)=84
x=4→h(4)=2(4)^2+5(4)+2=2(16)+20+2=32+20+2→h(4)=54
x=4→f(4)=3^4+2=81+2→f(4)=83>54=h(4)
f(4)=83<84=g(4)
Answer:
Step-by-step explanation:
If you can post the table then I'lI be happy to help