Answer: 1.95s
Explanation:
Given
ma = 290 cos 34.9 - fk
fk = 290 cos 34.9 - ma
fn = mg + 400 sin Φ
fn = 290 + 400 sin 34.9
fn = 290 + 228.9
fn = 518.9
fk = fn * uk
uk = 0.57
290 cos 34.9 - ma = 518.9 * 0.57
290 cos 34.9 - ma = 295.8
290 cos 34.9 - 295.8 = ma
ma = -58
m = 290/10 = 29
a = 58/29
a = 2
Using equation of motion
S = ut + .5at²
3.8 = 0 + .5*2*t²
3.8 = t²
t = 1.95s
The answer is B
How quickly are the stars in the Milky Way moving away from Earth
Answer:It depends on the initial velocity of the projectile and the angle of projection. The maximum height of the projectile is when the projectile reaches zero vertical velocity. ... The horizontal displacement of the projectile is called the range of the projectile and depends on the initial velocity of the object
When you are pushing an object up an inclined plane, the object is gaining gravitational potential energy as it is gaining height. The kinetic energy of the object decreases and converts into that potential energy as you go up. When you have stopped, all of the kinetic energy of the object has fully been converted to gravitational potential energy.
Answer:
The rate of flow of water is 71.28 kg/s
Solution:
As per the question:
Diameter, d = 18.0 cm
Diameter, d' = 9.0 cm
Pressure in larger pipe, P = 
Pressure in the smaller pipe, P' = 
Now,
To calculate the rate of flow of water:
We know that:
Av = A'v'
where
A = Cross sectional area of larger pipe
A' = Cross sectional area of larger pipe
v = velocity of water in larger pipe
v' = velocity of water in larger pipe
Thus

v' = 4v
Now,
By using Bernoulli's eqn:

where
h = h'




Now, the rate of flow is given by:

