Answer:
Astronomical Unit (AU). The definition of AU is the distance between the sun and the earth. Hopes this helps!
Explanation:
Answer:
19.5324 MPa
Explanation:
Information provided
Angle between the normal to the slip plane with tensile axis, 
Angle by slip direction with tensile axis,
Critical resolved shear stress,
Applied stress
Shear stress at slip plane
hence crystal won’t yield
Applied stress,
for crystal to yield is given by

A few different ways to do this:
Way #1:
The current in the series loop is (12 V) / (total resistance) .
(Turns out to be 2 Amperes, but the question isn't asking for that.)
In a series loop, the current is the same at every point, so it's
the same current through each resistor.
The power dissipated by a resistor is (current)² · (resistance),
and the current is the same everywhere in the circuit, so the
smallest resistance will dissipate the least power. That's R1 .
And by the way, it's not "drawing" the most power. It's dissipating it.
Way #2:
Another expression for the power dissipated by a resistance is
(voltage across the resistance)² / (resistance) .
In a series loop, the voltage across each resistor is
[ (individual resistance) / (total resistance ] x battery voltage.
So the power dissipated by each resistor is
(individual resistance)² x [(battery voltage) / (total resistance)²]
This expression is smallest for the smallest individual resistance.
(The other two quantities are the same for each individual resistor.)
So again, the least power is dissipated by the smallest individual resistance.
That's R1 .
Way #3: (Einstein's way)
If we sat back and relaxed for a minute, stared at the ceiling, let our minds
wander, puffed gently on our pipe, and just daydreamed about this question
for a minute or two, we might have easily guessed at the answer.
===> When you wire up a battery and a light bulb in series, the part
that dissipates power, and gets so hot that it radiates heat and light, is
the light bulb (some resistance), not the wire (very small resistance).
Answer:
a) No difference
Explanation:
Since the billiard balls are identical , they have the same mass. Also they have the same speed
Since the angular momentum is conserved and the total energy is conserved ( if we assume elastic collision)
1/2 m1 * v i1² +1/2 m2 * v i1² = 1/2 m1 * v f1² +1/2 m2 * v f2²
where m= mass , vi= initial velocity , vf= final velocity
since m1=m2=m , vi1=vi2=vi
1/2 m1 * v i1² +1/2 m2 * v i1² = 1/2 m1 * v f1² +1/2 m2 * v f2²
m * v i² = 1/2 m (v f1² +v f2² )
vi² = 1/2(v f1² +v f2² )
since the 2 balls are indistinguishable from each other (they have identical initial mass and velocity) there is no reason for a preferential speed for one of the balls and therefore its velocities must be equal . Thus vf1=vf2=vf
therefore
v i² = 1/2(v f1² +v f2² ) = v i1² = 1/2* 2vf² = vf²
and thus
vi= vf
in conclusion, there is no difference in speed after the rebound