Answer:
<em>The person needs to apply 25 N to balance the seesaw</em>
Explanation:
<u>Moment</u>
The moment of a force is a measure of its tendency to cause a body to rotate about a specific point or axis.
The moment M of a force F located at a distance x from the axis of rotation is calculated as follows:
M = F.x
The image shows a moment of M=100 N.m is needed to be applied to balance the seesaw. It can also be noted that the distance to the pivot is x=4 m
To calculate the force needed to balance the seesaw, we solve for F:


F = 25 N
The person needs to apply 25 N to balance the seesaw
The process is called transpiration <span />
Answer:
it's pray hoped this helped
The acceleration of gravity on Jupiter is listed as <em>24.79 m/s²</em> .
That's roughly 2.53 times its value on Earth. So if you weigh, let's say,
130 pounds on Earth, then you would weigh about 328 pounds on Jupiter.
The correct option that can be deduced for both Object P and Q is Option b) I and II only
To solve this question correctly, we need to understand the concept of density and it relation to mass and volume.
<h3>What is Density?</h3>
Density is a physical property of an object and can be expressed by using the relation:

From the given parameters, we are being told that:
This implies that Q has a greater density that P. Since Q has a greater density than P, Q will be heavier since it will have greater mass.
However, Q will not be denser than water because if that happens, P will be have a greater density which is untrue in this scenario.
Therefore, we can conclude that:
- 1. Q is heavier than P
- II. 1cm³ of Q has a greater mass than 1cm³ of P
Learn more about density here:
brainly.com/question/6838128