1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
6

The surface temperature of a planet depends on both the distance of the planet from the Sun and on how the panet's atmosphere di

stributes energy. Mercury has a mass of 0.33 x 104 kg, a radius of 2440 km and it orbits the Sun in an elliptical orbit with a semi- major axis of 0.39 AU and eccentricity of 0.21. Assuming that the Sun radiates uniformly at a rate of 4 x 1026 W, cakculate the solar energy fhx (power incident m2 perpendicular to the Sun's rays), at Mercury's aphelion and perihelion.
Physics
1 answer:
BaLLatris [955]3 years ago
4 0

Answer:

Aphelion: 6404 W/m2

Perihelion: 14978 W/m2

Explanation:

The solar energy flux depends on the solar power output divided by the surface of a sphere with a radius equal to the distance to the Sun.

\Phi sol = \frac{Psol}{4 * \pi * d^2}

The distances we need are the aphelion and perihelion of Mercury.

Planetary orbits are ellipses. In an ellipse the eccentricity is related to linear eccentricity and the length of the semi major axis:

e = \frac{c}{a}

Where

e: eccentricity

c: linear eccentricity

a: semi major axis

The linear eccentricity is equal to the distance of the focus of the center of the ellipse.

c = a * c =

a = 0.39 AU = 5.83e10 m

c = 5.83e10e * 0.21 = 1.22e10 m

In planetary orbits the Sun is in one of the fucuses. With this we can calculate the prihelion and aphelion as:

Ap = a + c = 5.83e10 + 1.22e10 = 7.05e10 m

Pe = a - c = 5.83e10 - 1.22e10 = 4.61e10 m

And the solar energy fluxes will be:

\Phi Ap = \frac{4e26}{4 * \pi * 7.05e10^2} = 6404 W/m2

\Phi Pe = \frac{4e26}{4 * \pi * 4.61e10^2} = 14978 W/m2

You might be interested in
Two charged particles are a distance of 1.62 m from each other. One of the particles has a charge of 7.10 nc, and the other has
k0ka [10]

Answer:

A. F=107.6nN

B. Repulsive

Explanation:

According to coulombs law, the force between two charges is express as

F=(Kq1q2) /r^2

If the charges are of similar charge the force will be repulsive and if they are dislike charges, force will be attractive.

Note the constant K has a value 9*10^9

Hence for a charge q1=7.10nC=7.10*10^-9, q2=4.42*10^-9 and the distance r=1.62m

If we substitute values we have

F=[(9×10^9) ×(7.10×10^-9) ×(4.42×10^-9)] /(1.62^2)

F=(282.4×10^-9)/2.6244

F=107.6×10^-9N

F=107.6nN

B. Since the charges are both positive, the force is repulsive

8 0
3 years ago
The British gold sovereign coin is an alloy of gold and copper having a total mass of 7.988 g, and is 22-karat gold 24 x (mass o
matrenka [14]

Answers:

(a) 0.0073kg

(b) Volume gold: 3.79(10)^{-7}m^{3}, Volume cupper: 7.6(10)^{-8}m^{3}

(c) 17633.554kg/m^{3}

Explanation:

<h2>(a) Mass of gold </h2><h2 />

We are told the total mass M of the coin, which is an alloy  of gold and copper is:

M=m_{gold}+m_{copper}=7.988g=0.007988kg   (1)

Where  m_{gold} is the mass of gold and m_{copper} is the mass of copper.

In addition we know it is a 22-karat gold and the relation between the number of karats K and mass is:

K=24\frac{m_{gold}}{M}   (2)

Finding {m_{gold}:

m_{gold}=\frac{22}{24}M   (3)

m_{gold}=\frac{22}{24}(0.007988kg)   (4)

m_{gold}=0.0073kg   (5)  This is the mass of gold in the coin

<h2>(b) Volume of gold and cupper</h2><h2 />

The density \rho of an object is given by:

\rho=\frac{mass}{volume}

If we want to find the volume, this expression changes to: volume=\frac{mass}{\rho}

For gold, its volume V_{gold} will be a relation between its mass m_{gold}  (found in (5)) and its density \rho_{gold}=19.30g/cm^{3}=19300kg/m^{3}:

V_{gold}=\frac{m_{gold}}{\rho_{gold}}   (6)

V_{gold}=\frac{0.0073kg}{19300kg/m^{3}}   (7)

V_{gold}=3.79(10)^{-7}m^{3}   (8)  Volume of gold in the coin

For copper, its volume V_{copper} will be a relation between its mass m_{copper}  and its density \rho_{copper}=8.96g/cm^{3}=8960kg/m^{3}:

V_{copper}=\frac{m_{copper}}{\rho_{copper}}   (9)

The mass of copper can be found by isolating m_{copper} from (1):

M=m_{gold}+m_{copper}  

m_{copper}=M-m_{gold}  (10)

Knowing the mass of gold found in (5):

m_{copper}=0.007988kg-0.0073kg=0.000688kg  (11)

Now we can find the volume of copper:

V_{copper}=\frac{0.000688kg}{8960kg/m^{3}}   (12)

V_{copper}=7.6(10)^{-8}m^{3}   (13)  Volume of copper in the coin

<h2>(c) Density of the sovereign coin</h2><h2 />

Remembering density is a relation between mass and volume, in the case of the coin the density \rho_{coin will be a relation between its total mass M and its total volume V:

\rho_{coin}=\frac{M}{V} (14)

Knowing the total volume of the coin is:

V=V_{gold}+V_{copper}=3.79(10)^{-7}m^{3}+7.6(10)^{-8}m^{3}=4.53(10)^{-7}m^{3} (15)

\rho_{coin}=\frac{0.007988kg}{4.53(10)^{-7}m^{3}} (16)

Finally:

\rho_{coin}=17633.554kg/m^{3}} (17)  This is the total density of the British sovereign coin

6 0
3 years ago
RESUME EXAMPLE??<br>Comment what a resume must look like done
CaHeK987 [17]

Answer:

Explanation:

I don't understand your question

8 0
3 years ago
NEED HELP ASAP QUIZ PLEASE
zmey [24]
Blank 1 Thermal energy
Blank 2 heat
Thermal energy is the total energy of the particles.
Heat is the movement of thermal energy from a substance at a higher temperature to another at a lower temperature
6 0
3 years ago
You are participating in a NASA traineeship, working with a group planning a new landing on Mars. Your supervisor has come up wi
aivan3 [116]

Answer:

h=17005.8 km

Explanation:

Newton's law of universal gravitation states that the force experimented by a satellite of mass m orbiting Mars, which has mass M=6.39\times10^{23} kg at a distance r will be:

F=\frac{GMm}{r^2}

where G=6.67\times10^{-11}Nm^2/kg^2 is the gravitational constant.

This force is the centripetal force the satellite experiments, so we can write:

F=ma_{cp}=mr\omega^2=mr(\frac{2\pi}{T})^2=\frac{4\pi^2mr}{T^2}

Putting all together:

\frac{GMm}{r^2}=\frac{4\pi^2mr}{T^2}

which means:

r=\sqrt[3]{\frac{GM}{4\pi^2}T^2}

Which for our values is:

r=\sqrt[3]{\frac{(6.67\times10^{-11}Nm^2/kg^2)(6.39\times10^{23} kg)}{4\pi^2}(1.026\times24\times60\times60s)^2}=20395282m=20395.3km

Since this distance is measured from the center of Mars, to have the height above the Martian surface we need to substract the radius of Mars R=3389.5 km , which leaves us with:

h=r-R=20395.3km-3389.5 km=17005.8 km

6 0
3 years ago
Other questions:
  • While hiking in the mountains, tanya observed a narrow and steep valley with a stream at the bottom of it. what most likely caus
    15·2 answers
  • A 2.00-kg object is attached to a spring and placed on a frictionless, horizontal surface. A horizontal force of 20.0 N is requi
    5·1 answer
  • A sailor in a small sailboat encounters shifting winds. She sails 2.00 km east, then 3.50 km southeast, and then an additional d
    13·1 answer
  • A 5 kg ball is thrown at 4 m/s. What is the ball’s momentum
    12·1 answer
  • A LOT OF POINTS!! Best answer gets brainliest!
    7·1 answer
  • A 0.0600-kilogram ball traveling at 60.0 meters per second hits a concrete wall. What speed must a 0.0100-kilogram bullet have i
    7·1 answer
  • A magnetic field is formed when electric charges move. When the electric charges stop moving, the magnetic field (which was form
    15·1 answer
  • 100.0 J of work accelerates a 0.500 kg hockey puck across an ice rink (a frictionless
    6·1 answer
  • Answer ASAP and only if you know its correct <br> this is science btw
    8·1 answer
  • A body starts moving from rest and attends the acceleration of 0.5m/s². calculate the velocity at the end of 3 minutes also find
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!