1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serggg [28]
3 years ago
8

The British gold sovereign coin is an alloy of gold and copper having a total mass of 7.988 g, and is 22-karat gold 24 x (mass o

f gold)/(total mass) (a) Find the mass of gold in the sovereign in kilograms using the fact that the number of karats kc (b) Calculate the volumes of gold and copper, respectively, used to manufacture the coin. m3 volume of gold m3 volume of copper (c) Calculate the density of the British sovereign coin. kg/m3
Physics
1 answer:
matrenka [14]3 years ago
6 0

Answers:

(a) 0.0073kg

(b) Volume gold: 3.79(10)^{-7}m^{3}, Volume cupper: 7.6(10)^{-8}m^{3}

(c) 17633.554kg/m^{3}

Explanation:

<h2>(a) Mass of gold </h2><h2 />

We are told the total mass M of the coin, which is an alloy  of gold and copper is:

M=m_{gold}+m_{copper}=7.988g=0.007988kg   (1)

Where  m_{gold} is the mass of gold and m_{copper} is the mass of copper.

In addition we know it is a 22-karat gold and the relation between the number of karats K and mass is:

K=24\frac{m_{gold}}{M}   (2)

Finding {m_{gold}:

m_{gold}=\frac{22}{24}M   (3)

m_{gold}=\frac{22}{24}(0.007988kg)   (4)

m_{gold}=0.0073kg   (5)  This is the mass of gold in the coin

<h2>(b) Volume of gold and cupper</h2><h2 />

The density \rho of an object is given by:

\rho=\frac{mass}{volume}

If we want to find the volume, this expression changes to: volume=\frac{mass}{\rho}

For gold, its volume V_{gold} will be a relation between its mass m_{gold}  (found in (5)) and its density \rho_{gold}=19.30g/cm^{3}=19300kg/m^{3}:

V_{gold}=\frac{m_{gold}}{\rho_{gold}}   (6)

V_{gold}=\frac{0.0073kg}{19300kg/m^{3}}   (7)

V_{gold}=3.79(10)^{-7}m^{3}   (8)  Volume of gold in the coin

For copper, its volume V_{copper} will be a relation between its mass m_{copper}  and its density \rho_{copper}=8.96g/cm^{3}=8960kg/m^{3}:

V_{copper}=\frac{m_{copper}}{\rho_{copper}}   (9)

The mass of copper can be found by isolating m_{copper} from (1):

M=m_{gold}+m_{copper}  

m_{copper}=M-m_{gold}  (10)

Knowing the mass of gold found in (5):

m_{copper}=0.007988kg-0.0073kg=0.000688kg  (11)

Now we can find the volume of copper:

V_{copper}=\frac{0.000688kg}{8960kg/m^{3}}   (12)

V_{copper}=7.6(10)^{-8}m^{3}   (13)  Volume of copper in the coin

<h2>(c) Density of the sovereign coin</h2><h2 />

Remembering density is a relation between mass and volume, in the case of the coin the density \rho_{coin will be a relation between its total mass M and its total volume V:

\rho_{coin}=\frac{M}{V} (14)

Knowing the total volume of the coin is:

V=V_{gold}+V_{copper}=3.79(10)^{-7}m^{3}+7.6(10)^{-8}m^{3}=4.53(10)^{-7}m^{3} (15)

\rho_{coin}=\frac{0.007988kg}{4.53(10)^{-7}m^{3}} (16)

Finally:

\rho_{coin}=17633.554kg/m^{3}} (17)  This is the total density of the British sovereign coin

You might be interested in
The density of gasoline is 730 kg/m3 at 0°C. Its average coefficient of volume expansion is 9.60 10-4(°C)−1. Assume 1.00 gal of
kipiarov [429]

Answer: 0.4911 kg

Explanation:

We have the following data:

\rho_{0\°C}= 730 kg/m^{3} is the density of gasoline at 0\°C

\beta=9.60(10)^{-4} \°C^{-1} is the average coefficient of volume expansion

We need to find the extra kilograms of gasoline.

So, firstly we need to transform the volume of gasoline from gallons to m^{3}:

V=8.50 gal \frac{0.00380 m^{3}}{1 gal}=0.0323 m^{3} (1)

Knowing density is given by: \rho=\frac{m}{V}, we can find the mass m_{1} of 8.50 gallons:

m_{1}=\rho_{0\°C}V

m_{1}=(730 kg/m^{3})(0.0323 m^{3})=23.579 kg (2)

Now, we have to calculate the factor f by which the volume of gasoline is increased with the temperature, which is given by:

f=(1+\beta(T_{f}-T_{o})) (3)

Where T_{o}=0\°C is the initial temperature and T_{f}=21.7\°C is the final temperature.

f=(1+9.60(10)^{-4} \°C^{-1}(21.7\°C-0\°C)) (4)

f=1.020832 (5)

With this, we can calculate the density of gasoline at 21.7\°C:

\rho_{21.7\°C}=730 kg/m^{3} f=(730 kg/m^{3})(1.020832)

\rho_{21.7\°C}=745.207 kg/m^{3} (6)

Now we can calculate the mass of gasoline at this temperature:

m_{2}=\rho_{21.7\°C}V (7)

m_{2}=(745.207 kg/m^{3})(0.0323 m^{3}) (8)

m_{2}=24.070 kg (9)

And finally calculate the mass difference \Delta m:

\Delta m=m_{2}-m_{1}=24.070 kg-23.579 kg (10)

\Delta m=0.4911 kg (11) This is the extra mass of gasoline

6 0
3 years ago
Which needs less heat to increase its temperature,
Julli [10]

Answer:

sand

Explanation:

5 0
3 years ago
Read 2 more answers
Una rueda gira con una frecuencia de 530 rpm. Determina la velocidad angular, el periodo y la frecuencia.
Vlad1618 [11]

Answer:

donde esta la bibliotekaaa

Explanation:

dfghj

6 0
2 years ago
This same car gets pulled over for speeding, and goes from 68 m/s to 0 m/s in 14
Harrizon [31]

Answer:

the acceleration of the car is -4.9m/s2.

the direction is opposite to the actual direction, since the acceleration is negative.

3 0
2 years ago
Walking along a 6-meter beam without falling helps to develop __________.
IrinaVladis [17]
C is correct answer.


Walking along a 6 meter beam without falling helps to develop balance.


Hope it helped.

-Charlie
4 0
3 years ago
Read 2 more answers
Other questions:
  • This subject is MUSIC, but there is no MUSIC subject to pick in the "pick a subject " bar, so I just picked a random one...Sorry
    7·1 answer
  • A large truck and a compct car are both driving down the
    15·1 answer
  • The element chlorine has two naturally occurring isotopes. About 75% of chlorine isotopes are Cl-35 and about 25% are Cl-37.
    12·2 answers
  • Dissolving sodium chloride will
    8·1 answer
  • The bent rod is supported by a smooth surface at b and by a collar at a, which is fixed to the rod and is free to slide over the
    13·1 answer
  • What is electricity?
    5·1 answer
  • PLEASE HELP I NEED TO TURN IT IN IN AN HOUR ITLL GIVE YOU POINTS PLS PLEASE
    15·1 answer
  • A gymnast jumps straight up, with her center of mass moving at 4.73 m/s as she leaves the ground. How high above this point is h
    5·1 answer
  • A bat at rest sends out ultrasonic sound waves at 46.2 kHz and receives them returned from an object moving directly away from i
    6·1 answer
  • A 190 g glider on a horizontal, frictionless air track is attached to a fixed ideal spring with force constant 160 N/m. At the i
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!