Answer:
Less than.
Explanation:
We have the positive charged metal sphere and we have to determine the electric field at a point near to it. In order to find that if we bring the positive test charge at that point then as we know that "like charges repel" so their electric field lines will repel each other resulting in a weaker electric field.
However if we bring the negative test charge at that point then of course there will be attraction and also the the electric field lines will direct from the positive to negative resulting in a stronger electric field between them. So there will be larger electric field then before.
"In this case, It can be concluded that electric field will be less than it was at this point before the test charge was present."
Answer:
P = 0.27R from the center
Explanation:
Given,
The radius of the uniform circular plate, R = 2R
The radius of the hole, r = R
The center of the smaller circle from the center is, d = 0.8R
The center of mass of a circular disc with a hole in it given by the formula
P = dr²/R² - r²
Where P is the distance from the center of mass located in the line joining the two centers opposite to the hole.
Substituting the given values in the above equation,
P = 0.8R x R² / 4R² - R²
= 0.27R³/R²
= 0.27R
Hence the center of mass of plate is at a distant P = 0.27R from the center
Answer:
(1) 2.25m/s^2
(2) 45.6m
Explanation:
(1) A car accelerates uniformly from 12m/s to 39m/s in 12 seconds
Therefore the average acceleration can be calculated as follows
a = 39-12/12
a = 27/12
a= 2.25m/s^2
(2) A butterfly is flying at 4m/s , it accelerates uniformly at 1.2 m/s for 6 seconds
u= 4
a= 1.2
t= 6
Therefore the distance can be calculated as follows
S= ut + 1/2at^2
= 4×6 + 1/2 × 1.2 × 6^2
= 24 + 1/2 × 1.2 × 36
= 24 + 1/2 × 43.2
= 24 + 21.6
S = 45.6m
Hence the butterfly travels at 45.6m
Answer:
The sun's mass moved toward the outer edge of it
Explanation: