The correct answer is D
Explanation:
Wave frequency is mainly determined by the number of waves that pass through a specific point. In a diagram, this can be found by analyzing the number of crests (top of the wave) and the space between them. For example, wave B is the one with the lowest frequency because there is only one crest and this shows only one wave passing at a specific point. On the opposite, wave D is the one with the highest frequency because this shows multiple crests and this indicates the frequency is high or that many waves pass through a specific point in a short time.
Answer:
Explanation:
H₂SO₄ is a strong acid, which means that most of it ionizes in aqueous solution.
Since it is a diprotic acid (two hydrogen ions) its ionization occurs in two steps:
- H₂SO₄ (aq) → H⁺(aq) + HSO₄⁻(aq)
- HSO₄⁻ (aq) → H⁺(aq) + SO₄²⁻(aq)
Thus, almost all H₂SO₄ has ionized and its final concentration is almost nothing.
After the first ionization, the conentrations of H⁺(aq) and HSO₄⁻ are equal but by the second ionization more H⁺ ions are produced along with SO₄⁻.
You can show it as one step dissociation, assuming 100% dissociation (given this is a strong acid):
By the stequiometry you can build this table:
H₂SO₄ (aq) → 2H⁺(aq) + SO₄²⁻(aq)
Initial A 0 0
Change - x +2x +x
Equilibrium A - x 2x x
As explained, A - x is very low, and 2x is twice x. Thus,
The rank of the concentrations from highest to lowest is:
It is more slippery, and it is heavier
Copper is formed of copper atoms, which are closely clustered together. If observed closely, one could witness the movement of electrons between the atoms of the copper. Each copper atom turns into a positive ion by losing one electron. Thus, copper is a lattice of positive copper ions with the movement of free electrons among them.
Due to movement of electrons freely through the metal, they are also known as conduction electrons. The presence of these conduction electrons makes the copper a good conductor of electricity and heat.
These are the first 20 elements, listed in order:
H - Hydrogen
He - Helium
Li - Lithium
Be - Beryllium
B - Boron
C - Carbon
N - Nitrogen
O - Oxygen
F - Fluorine
Ne - Neon
Na - Sodium
Mg - Magnesium
Al - Aluminum
Si - Silicon
P - Phosphorus
S - Sulfur
Cl - Chlorine
Ar - Argon
K - Potassium
Ca - Calcium
Try saying these over again and practicing for at least an hour a day!