Answer:
Correct answers: 2 and 3
Explanation:
1- correct would be: Isolation of ibuprofen is not dangerous, but it is necessary because only one enantiomer has effect on interaction with biologic <em>diana</em>
<em>2: Correct! This property of diastereomeric salts (differing solubilities) is really useful for the isolation of the original enantiomers</em>
<em>3: Correct! we can only observe their properties, like polirized light rotation or separation in an assimetric column for chromatography.</em>
4: correct would be: diastereomeric salts do not rotate light, they have lost the property of anantiomers that originated them
Answer:
A)
1. Reaction will shift rightwards towards the products.
2. It will turn green.
3. The solution will be cooler..
B) It will turn green.
Explanation:
Hello,
In this case, for the stated equilibrium:

In such a way, by thinking out the Le Chatelier's principle, we can answer to each question:
A)
1. If potassium bromide, which adds bromide ions, is added more reactant is being added to the solution, therefore, the reaction will shift rightwards towards the products.
2. The formation of the green complex is favored, therefore, it will turn green.
3. The solution will be cooler as heat is converted into "cold" in order to reestablish equilibrium.
B) In this case, as the heat is a reactant, if more heat is added, more products will be formed, which implies that it will turn green.
Regards.
Answer: The reactivity of group 7 decreases as we move down the group because:
Explanation:
The elements of group 7 that is fluorine to iodine. The halogens are non metals and they react with metals to gain electrons. The metals loose electrons and the non metal gains it.
As we move down the group the atomic radius gets bigger( more electron and more proton) and as a result the outer shells move further away from the nucleus.
There is more distance between the negatively charged electrons and positively charged nucleus.
Therefore the force of attraction between the shells and nucleus is lesser or weaker.
This makes attracting an extra electron from metals very difficult which results in weaker reaction.
Consequently, the reactivity decreases as we move down the group 7
Answer:
i think d is the answer for this
<span>0.48 grams.
Not a well worded question since it's assuming I know the reactions. But I'll assume that since there's just 1 atom of copper per molecule of Cu(NO3)2, that the reaction will result in 1 atom of copper per molecule of Cu(NO3)2 used. With that in mind, we will have 0.010 l * 0.75 mol/l = 0.0075 moles of copper produced.
To convert the amount in moles, multiply by the atomic weight of copper, which is 63.546 g/mol. So
0.0075 mol * 63.546 g/mol = 0.476595 g.
Round the results to 2 significant figures, giving 0.48 grams.</span>