Let's supposes the number of cups sold is <em>c</em>.
We can use an equation to solve this problem. Since both people are down some money, we will write the number they spent on supplies as negative, and use their rates as the unit rates for each side of the equation.
-35 + 1.50c = -20 + 1c
.05c = 15
c = 30
Thus, they will have to sell 30 cups.
the tale-tell fellow is the number inside the parentheses.
if that number, the so-called "growth or decay factor", is less than 1, then is Decay, if it's more than 1, is Growth.
![\bf f(x)=0.001(1.77)^x\qquad \leftarrow \qquad \textit{1.77 is greater than 1, Growth} \\\\[-0.35em] ~\dotfill\\\\ f(x)=2(1.5)^{\frac{x}{2}}\qquad \leftarrow \qquad \textit{1.5 is greater than 1, Growth} \\\\[-0.35em] ~\dotfill\\\\ f(x)=5(0.5)^{-x}\implies f(x)=5\left( \cfrac{05}{10} \right)^{-x}\implies f(x)=5\left( \cfrac{1}{2} \right)^{-x} \\\\\\ f(x)=5\left( \cfrac{2}{1} \right)^{x}\implies f(x)=5(2)^x\qquad \leftarrow \qquad \textit{Growth} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D0.001%281.77%29%5Ex%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Ctextit%7B1.77%20is%20greater%20than%201%2C%20Growth%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20f%28x%29%3D2%281.5%29%5E%7B%5Cfrac%7Bx%7D%7B2%7D%7D%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Ctextit%7B1.5%20is%20greater%20than%201%2C%20Growth%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20f%28x%29%3D5%280.5%29%5E%7B-x%7D%5Cimplies%20f%28x%29%3D5%5Cleft%28%20%5Ccfrac%7B05%7D%7B10%7D%20%5Cright%29%5E%7B-x%7D%5Cimplies%20f%28x%29%3D5%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E%7B-x%7D%20%5C%5C%5C%5C%5C%5C%20f%28x%29%3D5%5Cleft%28%20%5Ccfrac%7B2%7D%7B1%7D%20%5Cright%29%5E%7Bx%7D%5Cimplies%20f%28x%29%3D5%282%29%5Ex%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Ctextit%7BGrowth%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, let's take a peek at the second set.
![\bf f(x)=3(1.7)^{x-2}\qquad \leftarrow \qquad \begin{array}{llll} \textit{the x-2 is simply a horizontal shift}\\\\ \textit{1.7 is more than 1, Growth} \end{array} \\\\[-0.35em] ~\dotfill\\\\ f(x)=3(1.7)^{-2x}\implies f(x)=3\left(\cfrac{17}{10}\right)^{-2x}\implies f(x)=3\left(\cfrac{10}{17}\right)^{2x} \\\\\\ \textit{that fraction is less than 1, Decay} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D3%281.7%29%5E%7Bx-2%7D%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Ctextit%7Bthe%20x-2%20is%20simply%20a%20horizontal%20shift%7D%5C%5C%5C%5C%20%5Ctextit%7B1.7%20is%20more%20than%201%2C%20Growth%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20f%28x%29%3D3%281.7%29%5E%7B-2x%7D%5Cimplies%20f%28x%29%3D3%5Cleft%28%5Ccfrac%7B17%7D%7B10%7D%5Cright%29%5E%7B-2x%7D%5Cimplies%20f%28x%29%3D3%5Cleft%28%5Ccfrac%7B10%7D%7B17%7D%5Cright%29%5E%7B2x%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bthat%20fraction%20is%20less%20than%201%2C%20Decay%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf f(x)=3^5\left( \cfrac{1}{3} \right)^x\qquad \leftarrow \qquad \textit{that fraction is less than 1, Decay} \\\\[-0.35em] ~\dotfill\\\\ f(x)=3^5(2)^{-x}\implies f(x)=3^5\left( \cfrac{2}{1} \right)^{-x}\implies f(x)=3^5\left( \cfrac{1}{2} \right)^x \\\\\\ \textit{that fraction in the parentheses is less than 1, Decay}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D3%5E5%5Cleft%28%20%5Ccfrac%7B1%7D%7B3%7D%20%5Cright%29%5Ex%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Ctextit%7Bthat%20fraction%20is%20less%20than%201%2C%20Decay%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20f%28x%29%3D3%5E5%282%29%5E%7B-x%7D%5Cimplies%20f%28x%29%3D3%5E5%5Cleft%28%20%5Ccfrac%7B2%7D%7B1%7D%20%5Cright%29%5E%7B-x%7D%5Cimplies%20f%28x%29%3D3%5E5%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5Ex%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bthat%20fraction%20in%20the%20parentheses%20is%20less%20than%201%2C%20Decay%7D)
Answer:
30
Step-by-step explanation:
Pythagorean theorem states that a^2 + b^2 = c^2
this theorem only works on triangles with an angle of 90 degrees or a right triangle.
18^2 + 24^2 = 900
the square root of 900 is 30
I did the square root of 900 because the square root is the 'opposite' of squaring which is what you need to do in order to find 'c' is the Pythagorean theorem. 'a' is 18, and 'b' is 24
Answer is 30
Answer:
sure if im able, with what?
Step-by-step explanation: