Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
Answer:

Step-by-step explanation:
I hope I did this right:
So first thing to do is set up the equation.

Next thing to to is subtract 1/3 from both sides to get:

Next up, you will multiply each of the fractions by the opposing value
(multiply 1/8 by 3 and 1/3 by 8)


Alright almost done, by multiplying 24 by 5 you get 120, that will go in the numerator to make the math a lot easier.
K = 

Finally, you subtract 123 over 24 by 8 over 24.
K = 
Then just simplfy the 115/24 to get

You'll have to convert the equation from x-int to standard form (ax² + by + c), and then convert it to vertex form (y = a(x - h)²<span> + </span><span>k)</span>
Answer:
f(-1) = -6
Step-by-step explanation:
f(x) = 12 / ( 4x+2)
Let x = -1
f(-1) = 12 / ( 4*-1+2)
= 12 / (-4+2)
= 12 / -2
= -6