Combining like terms would be defined as multiplying each term in a set of parentheses by the number outside of the parentheses.
Djdjxkdjdkdkdjddjdjdj yuppppppppp 37387(5y6666+4)WEI
Answer:
⣠⣴⣶⣿⠿⢿⣶⣶⣦⣄⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⣼⡿⠋⠁⠀⠀⠀⢀⣈⠙⢿⣷⡄⠀⠀ ⠀⠀⠀⠀⢸⣿⠁⠀⢀⣴⣿⠿⠿⠿⠿⠿⢿⣷⣄⠀ ⠀⢀⣀⣠⣾⣿⡇⠀⣾⣿⡄⠀⠀⠀⠀⠀⠀⠀⠹⣧ ⣾⡿⠉⠉⣿⠀⡇⠀⠸⣿⡌⠓⠶⠤⣤⡤⠶⢚⣻⡟ . ⣿⣧⠖⠒⣿⡄⡇⠀⠀⠙⢿⣷⣶⣶⣶⣶⣶⢿⣿⠀ . ⣿⡇⠀⠀⣿⡇⢰⠀⠀⠀⠀⠈⠉⠉⠉⠁⠀⠀⣿⠀. ⣿⡇⠀⠀⣿⡇⠈⡄⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⣿⠀ ⣿⣷⠀⠀⣿⡇⠀⠘⠦⣄⣀⣀⣀⣀⣀⡤⠊⠀⣿⠀ ⢿⣿⣤⣀⣿⡇⠀⠀⠀⢀⣀⣉⡉⠁⣀⡀⠀⣾⡟⠀ ⠀⠉⠛⠛⣿⡇⠀⠀⠀⠀⣿⡟⣿⡟⠋⠀ * ° * • ☆ ° .°• * ✯ ☄ ☆ ★ * ° * °· * . • ° ★ • ☄ ☄ ▁▂▃▄▅▆▇▇▆▅▄▃▁
⣠⣴⣶⣿⠿⢿⣶⣶⣦⣄⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⣼⡿⠋⠁⠀⠀⠀⢀⣈⠙⢿⣷⡄⠀⠀ ⠀⠀⠀⠀⢸⣿⠁⠀⢀⣴⣿⠿⠿⠿⠿⠿⢿⣷⣄⠀ ⠀⢀⣀⣠⣾⣿⡇⠀⣾⣿⡄⠀⠀⠀⠀⠀⠀⠀⠹⣧ ⣾⡿⠉⠉⣿⠀⡇⠀⠸⣿⡌⠓⠶⠤⣤⡤⠶⢚⣻⡟ . ⣿⣧⠖⠒⣿⡄⡇⠀⠀⠙⢿⣷⣶⣶⣶⣶⣶⢿⣿⠀ . ⣿⡇⠀⠀⣿⡇⢰⠀⠀⠀⠀⠈⠉⠉⠉⠁⠀⠀⣿⠀. ⣿⡇⠀⠀⣿⡇⠈⡄⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⣿⠀ ⣿⣷⠀⠀⣿⡇⠀⠘⠦⣄⣀⣀⣀⣀⣀⡤⠊⠀⣿⠀ ⢿⣿⣤⣀⣿⡇⠀⠀⠀⢀⣀⣉⡉⠁⣀⡀⠀⣾⡟⠀ ⠀⠉⠛⠛⣿⡇⠀⠀⠀⠀⣿⡟⣿⡟⠋⠀ * ° * • ☆ ° .°• * ✯ ☄ ☆ ★ * ° * °· * . • ° ★ • ☄ ☄ ▁▂▃▄▅▆▇▇▆▅▄▃▁
Answer:
Option D
Step-by-step explanation:
Given f(x) = ![\sqrt[3]{4x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4x%7D)
g(x) = 2x + 3
Since, 
![=\frac{\sqrt[3]{4x}}{2x+3}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B4x%7D%7D%7B2x%2B3%7D)
This function is defined for the denominator is not equal to zero.
(2x + 3) ≠ 0
x ≠ 
Therefore, Option D will be the correct option.