Answer:
Step-by-step explanation:
The answer is 5 :)
No it is not a function, because a function cannot have more than one output per input. When x=-3, there are two solutions shown: (-3,2) and (-3,3), therefore it cannot be a function.
Answer:
f(g(x)) = 2(x^2 + 2x)^2
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Step-by-step explanation:
Given;
f(x) = 2x^2
g(x) = x^2 + 2x
To derive the expression for f(g(x)), we will substitute x in f(x) with g(x).
f(g(x)) = 2(g(x))^2
f(g(x)) = 2(x^2 + 2x)^2
Expanding the equation;
f(g(x)) = 2(x^2 + 2x)(x^2 + 2x)
f(g(x)) = 2(x^4 + 2x^3 + 2x^3 + 4x^2)
f(g(x)) = 2(x^4 + 4x^3 + 4x^2)
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Hope this helps...
(-2x+4)+2(2x+1)= -2(-x-3)