1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gogolik [260]
3 years ago
10

An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straight

en his arms. How far apart are the astronaut and the satellite after 1.40 min?
Physics
1 answer:
arlik [135]3 years ago
7 0

Answer:

The astronaut and the satellite are 53.718 m apart.

Explanation:

Given;

mass of spacewalking astronaut, = 88 kg

mass of satellite, = 645 kg

force exerts by the satellite, F = 110N

time for this action, t = 0.45 s

Determine the acceleration of the satellite after the push

F = ma

a = F / m

a = 110 / 645

a = 0.171 m/s²

Determine the final velocity of the satellite;

v = u + at

where;

u is the initial velocity of the satellite = 0

v = 0 + 0.171 x 0.45

v = 0.077 m/s

Determine the displacement of the satellite after 1.4 m

d₁ = vt

d₁ = 0.077 x (1.4 x 60)

d₁ = 6.468 m

According to Newton's third law of motion, action and reaction are equal and opposite;

Determine the backward acceleration of the astronaut after the push;

F = ma

a = F / m

a = 110 / 88

a = 1.25 m/s²

Determine the final velocity of the astronaut

v = u + at

The initial velocity of the astronaut = 0

v = 1.25 x 0.45

v = 0.5625 m/s

Determine the displacement of the astronaut after 1.4 min

d₂ = vt

d₂ = 0.5625 x (1.4 x 60)

d₂ = 47.25 m

Finally, determine the total separation between the astronaut and the satellite;

total separation = d₁ + d₂

total separation = 6.468 m + 47.25 m

total separation = 53.718 m

Therefore, the astronaut and the satellite are 53.718 m apart.

You might be interested in
A stone is thrown horizontally from the top of a tower at the same instant a ball is droppedvertically. Which object is travelin
Igoryamba

The ball is travelling faster when the two objects hits the level ground below.

<h3>Time of motion of the objects</h3>

The time of motion of the objects depends on height and initial velocity of projection of the objects.

The stone has no initial vertical velocity while the ball has initial vertical velocity.

Thus, the ball is travelling faster when the two objects hits the level ground below.

Learn more about time of motion here: brainly.com/question/2364404

#SPJ1

5 0
2 years ago
A fish swims 12.0 m in 5.0 s. It swims the first 4.0 m in 2.0 s, the next 3.0 m in 1.2 s, and the last 5.0 m in 1.8 s. What is t
xz_007 [3.2K]
Use the distance swan and the time elapsed in that interval.

Average velocity = distance / time

Average velocity = [4.0 m + 3.0m] / 3.2 s = 2.1875 m/s 
7 0
3 years ago
Read 2 more answers
Which of the following is a chemical change?
klemol [59]

a). Water is still H₂O after it freezes.

b). Ice is still H₂O after it melts.

c). Wire is still Cu when it's bent.

d). Paper combines with the O₂ in the air, and turns into
     a lot of new compounds when it burns.

3 0
3 years ago
12) Which is MOST LIKELY a solid at room temperature?
ella [17]
Gold
Silver
Iron
Platinum
Goes on and on 


4 0
3 years ago
THIS MARCIN
nekit [7.7K]

Answer:

The image is formed at a ‘distance of 16.66 cm’ away from the lens as a diminished image of height 3.332 cm. The image formed is a real image.

Solution:

The given quantities are

Height of the object h = 5 cm

Object distance u = -25 cm

Focal length f = 10 cm

The object distance is the distance between the object position and the lens position. In order to find the position, size and nature of the image formed, we need to find the ‘image distance’ and ‘image height’.

The image distance is the distance between the position of convex lens and the position where the image is formed.

We know that the ‘focal length’ of a convex lens can be found using the below formula

1f=1v−1u\frac{1}{f}=\frac{1}{v}-\frac{1}{u}

f

1

=

v

1

−

u

1

Here f is the focal length, v is the image distance which is known to us and u is the object distance.

The image height can be derived from the magnification equation, we know that

Magnification=h′h=vu\text {Magnification}=\frac{h^{\prime}}{h}=\frac{v}{u}Magnification=

h

h

′

=

u

v

Thus,

h′h=vu\frac{h^{\prime}}{h}=\frac{v}{u}

h

h

′

=

u

v

First consider the focal length equation to find the image distance and then we can find the image height from magnification relation. So,

1f=1v−1(−25)\frac{1}{f}=\frac{1}{v}-\frac{1}{(-25)}

f

1

=

v

1

−

(−25)

1

1v=1f+1(−25)=110−125\frac{1}{v}=\frac{1}{f}+\frac{1}{(-25)}=\frac{1}{10}-\frac{1}{25}

v

1

=

f

1

+

(−25)

1

=

10

1

−

25

1

1v=25−10250=15250\frac{1}{v}=\frac{25-10}{250}=\frac{15}{250}

v

1

=

250

25−10

=

250

15

v=25015=503=16.66 cmv=\frac{250}{15}=\frac{50}{3}=16.66\ \mathrm{cm}v=

15

250

=

3

50

=16.66 cm

Then using the magnification relation, we can get the image height as follows

h′5=−16.6625\frac{h^{\prime}}{5}=-\frac{16.66}{25}

5

h

′

=−

25

16.66

So, the image height will be

h′=−5×16.6625=−3.332 cmh^{\prime}=-5 \times \frac{16.66}{25}=-3.332\ \mathrm{cm}h

′

=−5×

25

16.66

=−3.332 cm

Thus the image is formed at a distance of 16.66 cm away from the lens as a diminished image of height 3.332 cm. The image formed is a ‘real image’.

5 0
3 years ago
Other questions:
  • If part of an electric circuit dissipates energy at 6 W when it draws a current of 3 A, what voltage is impressed across it?
    14·1 answer
  • Suppose a scientist doing an experiment in nuclear fusion starts out with twelve atoms. How many atoms will most likely result f
    15·2 answers
  • What will sunshine help produce in the body?
    7·1 answer
  • What are compounds made of
    9·1 answer
  • How many earths could fit inside jupiter
    7·1 answer
  • A particle with mass 1.81*10^-3kg and a charge of 1.22*10^-8C has, at a given instant, a velocity v= (3.0*10^4 m/s)j.
    13·1 answer
  • A student forgets to turn off a 6.00x 10² W block heater of a car when the weather turns warm. If 14 h goes by before he shuts i
    15·1 answer
  • PLZ HELP WILL GIVE BRAINLIEST
    11·1 answer
  • How deep is the event horizon
    15·1 answer
  • Can u pls help me ........
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!