Answer:
d = 0.076 mm
Explanation:
Given data
diffraction pattern d1 = 0.19 mm = 0.019 cm
separated s(1) = 1.8 cm
separated s(2) = 4.5 cm
to find out
d2 for an unknown
solution
we know here that spacing in between the diffraction fringe is always inversely proportional to diffraction grating so
we will apply here formula for unknown d that is
d1 (s1 / L) = d2 (s2 /L)
d2 = d1 × s(1) / s(2)
put here all thes evalue we get d2
d2 = d1 × s(1) / s(2)
d2 = 0.019 × 1.8 / 4.5
d2 = 0.0076 cm
d2 = 0.076 mm
Answer: 1.39 s
Explanation:
We can solve this problem with the following equations:
(1)
(2)
Where:
is the length the steel wire streches (taking into account 1mm=0.001 m)
is the length of the steel wire before being streched
is the force due gravity (the weight) acting on the pendulum with mass 
is the transversal area of the wire
is the Young modulus for steel
is the period of the pendulum
is the acceleration due gravity
Knowing this, let's begin by finding
:
(3)
Where
is the diameter of the wire
(4)
(5)
Knowing this area we can isolate
from (1):
(6)
And substitute
in (2):
(7)
(8)
Finally:

The weight could be different, metals have a higher mass than nonmetals, so when occupying the same amount of space, the weight of the metal is far more.
The car's mass is 1600 kg.
Its weight is (mass) x (gravity).
On Earth, that's (1600 kg) x (9.8 m/s²) = 15,680 Newtons.
At the moment, that's the only force acting on the car, directed downward and provided by gravity.
If you want to lift the car, then the net force has to be directed upward, and must either exactly cancel or exceed the force of gravity.
So the minimum force required to lift the car is <em>15,680 Newtons</em>, directed vertically upward.