To get the total resistance in a parallel circuit, you need to remember that unlike in a series, you do not just merely add the resistances. You need to get the reciprocal first of each resistance and add them together.

After adding them, you will get the reciprocal again and then compute for the value. The problem says that there are 4 resistors in the circuit that have a resistance of 75.

Add up the numerator and copy the denominator:

Then get the reciprocal to get the total resistance:

The answer to your question then is A. 18.8.
Answer:
Orbital period, T = 1.00074 years
Explanation:
It is given that,
Orbital radius of a solar system planet, 
The orbital period of the planet can be calculated using third law of Kepler's. It is as follows :

M is the mass of the sun

T = 31559467.6761 s
T = 1.00074 years
So, a solar-system planet that has an orbital radius of 4 AU would have an orbital period of about 1.00074 years.
<span>The unknown substance is silver.
I don't see a list of available substances, but let's see if there's something reasonable available that will match. First, let's calculate the density of the unknown substance. Density is mass per volume, so
273 g / 26 mL = 10.5 g/mL
Looking up a list of elements sorted by density, I see the following:
10.07 Actinium
10.22 Molybdenum
10.5 Silver
11.35 Lead
And silver at 10.5 g/ml is a very nice match for the unknown substances' density of 10.5 g/ml.</span>