Answer:
- 8.33 x 10⁻³ rad /s ( anticlockwise)
Explanation:
The rotational movement of beetle and turntable is caused by torque generated by internal forces , we can apply conservation of angular momentum.
That is ,
I₁ ω₁ = I₂ω₂ , ω₁ and ω₂ are angular velocity of beetle and turntable respectively.
ω₁ + ω₂ = .05 radian /s ( given )
Momentum of inertia of beetle I₁ = mass x (distance from axis)²
= 15 x 10⁻³ x R² ( R is radius of the turntable )
Momentum of inertia of turntable I₂ =1/2 mass x (distance from axis)²
= 75/2 x 10⁻³ x R² ( R is radius of the turntable )
I₁ ω₁ = I₂ω₂ ,
15 x 10⁻³ x R² x ( .05 - ω₂ ) = 75/2 x 10⁻³ x R² ω₂
15 x ( .05 - ω₂ ) = 75/2 x ω₂
.75 - 15ω₂ = 37.5ω₂
.75 = 52.5 ω₂
ω₂ = - 14.3 x 10⁻³ rad /s ( anticlockwise)
(1) The linear acceleration of the yoyo is 3.21 m/s².
(2) The angular acceleration of the yoyo is 80.25 rad/s²
(3) The weight of the yoyo is 1.47 N
(4) The tension in the rope is 1.47 N.
(5) The angular speed of the yoyo is 71.385 rad/s.
<h3> Linear acceleration of the yoyo</h3>
The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.
∑τ = Iα
rT - Rf = Iα
where;
- I is moment of inertia
- α is angular acceleration
- T is tension in the rope
- r is inner radius
- R is outer radius
- f is frictional force
rT - Rf = Iα ----- (1)
T - f = Ma -------- (2)
a = Rα
where;
- a is the linear acceleration of the yoyo
Torque equation for frictional force;
solve (1) and (2)
since the yoyo is pulled in vertical direction, T = mg
<h3>Angular acceleration of the yoyo</h3>
α = a/R
α = 3.21/0.04
α = 80.25 rad/s²
<h3>Weight of the yoyo</h3>
W = mg
W = 0.15 x 9.8 = 1.47 N
<h3>Tension in the rope </h3>
T = mg = 1.47 N
<h3>Angular speed of the yoyo </h3>
v² = u² + 2as
v² = 0 + 2(3.21)(1.27)
v² = 8.1534
v = √8.1534
v = 2.855 m/s
ω = v/R
ω = 2.855/0.04
ω = 71.385 rad/s
Learn more about angular speed here: brainly.com/question/6860269
#SPJ1
Answer:
true
Explanation:
The law of conservation of mass states that in a chemical reaction mass is neither created nor destroyed. For example, the carbon atom in coal becomes carbon dioxide when it is burned. The carbon atom changes from a solid structure to a gas but its mass does not change.