Answer:
Assuming this is a rectangular prism the surface area would be 324ft^2.
Step-by-step explanation:
Surface Area = 2(lw + lh + wh).
<h3>
Answer: C) 142 degrees</h3>
=======================================================
Explanation:
Extend segment MN such that it intersects side ST. Mark the intersection as point A. See the diagram below.
We're given that angle MNT is 72 degrees. The angle TNA is equal to 180-(angle MNT) = 180 - 72 = 108 degrees, since angles MNT and TNA add to 180.
For now, focus entirely on triangle TNA. We see from the diagram that T = 34 and we just found that N = 108. Let's find angle A
A+N+T = 180
A+108+34 = 180
A+142 = 180
A = 180-142
A = 38
So angle NAT is 38 degrees.
----------------------------
Since segment MA is an extension of MN, and because MN || SQ, this means MA is also parallel to SQ.
We found at the conclusion of the last section that angle NAT was 38 degrees. Angles QST and NAT are corresponding angles. They are congruent since MA || SQ. This makes angle QST to also be 38 degrees
----------------------------
The angles QSR and QST are a linear pair, so they are supplementary
(angle QSR) + (angle QST) = 180
angle QSR = 180 - (angle QST)
angle QSR = 180 - 38
angle QSR = 142 degrees
Answer:
3.67 units
Step-by-step explanation:
The central angle is at the point (0,0).
Then it's at the point (1,0)
Then it moved 210 degrees.
Let's bear in mind that we start moving the degree from it's current position.
So moving 210 degrees is moving 180 degrees plus 30 degrees.
Moving 180 degrees I like transforming linearly.
Now the location is at (-1,0)
But the distance covered will be
= 2πr*210/360
r = 1
= 2*3.142*1*(210/360)
= 6.144*0.5833333
= 3.67 units
Answer:
17) 750/9 and 18) 364
Step-by-step explanation:
17. Summation of 75*(0.1)^i from i=0 to infinity, that is equal to 75*(Summation of (0.1)^i). Summation of (0.1)^I is a geometric series with a sum of 1/(0.9)=10/9. Hence the series have a sum equal to 75*(10/9)=750/9
18) It's a series with sum=1+3+9+27+81+243=364
2(12+18) is not equivalent to 24+18