Answer:
From
m∠1 = m∠4
m∠1 + m∠2 = m∠3 + m∠4
m∠2 = m∠3
Identity property
∠2 ≅ ∠3
Equal angles are congruent
Step-by-step explanation:
Given
Reason
∠1 and ∠2 are supplementary
Given
Therefore;
m∠1 + m∠2 = 180°
Supplementary ∠s sum up to 180°
∠3 and ∠4 are supplementary
Given
Therefore;
m∠3 + m∠4 = 180°
Supplementary ∠s sum up to 180°
From which we have;
m∠1 + m∠2 = 180° = m∠3 + m∠4
Transitive property
m∠1 + m∠2 = m∠3 + m∠4
∠1 ≅ ∠4
Given
m∠1 = m∠4
Congruent ∠s have equal measure
Therefore;
m∠1 + m∠2 = m∠3 + m∠1
Transitive property
Therefore;
m∠1 + m∠2 - m∠1= m∠3 + m∠1 - m∠1
Subtraction property
m∠1 - m∠1 + m∠2 = m∠3 + m∠1 - m∠1
0 + m∠2 = m∠3 + 0
Inverse property
Therefore;
m∠2 = m∠3
Identity property
∠2 ≅ ∠3
Equal angles are congruent.