Answer:
(a). The time constant of the circuit is 2.17.
(b). The potential difference across the capacitor at t=17.0 s is 0.0396 V.
Explanation:
Given that,
Initial potential difference = 100 V
Potential difference across the capacitor = 1.00 V
(a). We need to calculate the time constant of the circuit
Using formula of potential difference

Put the value into the formula


On taking ln



(b). We need to calculate the potential difference across the capacitor at t=17.0 s
Using formula again


Hence, (a). The time constant of the circuit is 2.17.
(b). The potential difference across the capacitor at t=17.0 s is 0.0396 V.
Answer:
( 1000 × 4 = 4,000) (800×3= 2400) (800×2=1600) the answer is 1600 hope it helps
Explanation:
It is given that,
Speed of the ball, v = 10 m/s
Initial position of ball above ground, h = 20 m
(a) Let H is the maximum height reached by the ball. It can be calculated using the conservation of energy as :


h' = 5.1 m
The maximum height above ground,
H = 5.1 + 20
H = 25.1 meters
So, the maximum height reached by the ball is 25.1 meters.
(b) The ball's speed as it passes the window on its way down is same as the initial speed i.e. 10 m/s.
Hence, this is the required solution.
Answer:
Explanation:
See the attached figure . See the forces acting on man pulling up the box .
Man is stationary so net force acting on man is zero .
T + R = Wman
R is the reaction force of the ground of second floor .
R = Wman - T
Answer:
Probability of tunneling is 
Solution:
As per the question:
Velocity of the tennis ball, v = 120 mph = 54 m/s
Mass of the tennis ball, m = 100 g = 0.1 kg
Thickness of the tennis ball, t = 2.0 mm = 
Max velocity of the tennis ball,
= 89 m/s
Now,
The maximum kinetic energy of the tennis ball is given by:

Kinetic energy of the tennis ball, KE' = 
Now, the distance the ball can penetrate to is given by:


Thus



Now,
We can calculate the tunneling probability as:



Taking log on both the sides:

