Answer:
The frog takes 8 jumps to reach top of well
Explanation:
Given data
Frog at bottom=17 foot
Each time frog leaps 3 feet
Frog has not reached the top of the well, then the frog slides back 1 foot
To Find
Total number of leaps the frog needed to escape from well
Solution
in 1 jump distance jumped=3+(-1)
=2 feet
=2×1 feet
The "-1" is because the frog goes back
Now After 2 jumps the distance jumped as:
Distance Jumped=2+2
Distance Jumped=2*2
=4 feet
Similarly after 7 jumps
Distance Jumped=2+2+......+2
Distance Jumped=2*7
=14 feet
Now after 8th jump the frog climbs but doesnot slide back as it is reached to the top of well.
So
Distance Jumped=(Distance Jumped after 7 jumps)+3
=14+3
=17 feet
The frog takes 8 jumps to reach top of well
Answer:
4.245s
Explanation:
Given that,
Hypothetical value of speed of light in a vacuum is 18 m/s
Speed of the car, 14 m/s
Time given is 6.76 s, and we're asked to find the observed time, T
The relationship between the two times can be given as
T = t / √[1 - (v²/c²)]
The missing variable were looking for is t, and we can find it if we rearrange the formula and make t the subject
t = T / √[1 - (v²/c²)]
And now, we substitute the values and insert into the equation
t = 6.76 * √[1 - (14²/18²)]
t = 6.76 * √[1 - (196/324)]
t = 6.76 * √(1 - 0.605)
t = 6.76 * √0.395
t = 6.76 * 0.628
t = 4.245 s
Therefore, the time the driver measures for the trip is 4.245s
Hi! I believe your answer is decreasing. <u>An inclined plane makes work easier by decreasing the amount of effort force needed, but increases the distance</u>. I hope this helps you! Good luck and have a great day. ❤️✨
Answer:
Av = 25 [m/s]
Explanation:
To solve this problem we must use the definition of speed, which is defined as the relationship between distance over time. for this case we have.

where:
Av = speed [km/h] or [m/s]
distance = 180 [km]
time = 2 [hr]
Therefore the speed is equal to:
![Av = \frac{180}{2} \\Av = 90 [km/h]](https://tex.z-dn.net/?f=Av%20%3D%20%5Cfrac%7B180%7D%7B2%7D%20%5C%5CAv%20%3D%2090%20%5Bkm%2Fh%5D)
Now we must convert from kilometers per hour to meters per second
![90[\frac{km}{h}]*1000[\frac{m}{1km}]*1[\frac{h}{3600s} ]= 25 [m/s]](https://tex.z-dn.net/?f=90%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A1000%5B%5Cfrac%7Bm%7D%7B1km%7D%5D%2A1%5B%5Cfrac%7Bh%7D%7B3600s%7D%20%5D%3D%2025%20%5Bm%2Fs%5D)