Answer:
it appears to be B. acceleration
A rock is dropped from a 200 m high cliff. How long does it take to fall (a) the first 100 m and (b) the last 50 m?
The basic equation you want is:
s=at22
Solving for t:
t=2sa−−−√
We’ll assume a=9.8 , so 2a−−√=14.9−−−√≈0.4518
So, for (a)s=100 , so t=0.4518100−−−√=4.518
The total time is 0.4518200−−−√≈6.389
The time to fall 150 m is 0.4518150−−−√≈5.533
So the time to fall the last 50 m is 6.389 - 5.533 = 0.856 seconds
(
Answer:
0.338125 m/s
Explanation:
Applying,
Law of conservation of momentum
m'v' = mv............ Equation 1
Where m' = mass of the first skater, v' = velocity of the first skater, m = mass of the second skater, v = velocity of the second skater.
make v the subject of the equation
v = m'v'/m........... Equation 2
From the question,
Given: m' = 54.1 kg, v' = 0.375 m/s, m = 60 kg
Substitute these values into equation
v = (54.1×0.375)/60
v = 20.2875/60
v = 0.338125 m/s
B is correct.
Please vote my answer brainliest. thanks!