The percentage of the drink that finds the target and lands in your mouth.
The surrounding environment cool off is the answer
Answer:
3.28 cm
Explanation:
To solve this problem, you need to know that a magnetic field B perpendicular to the movement of a proton that moves at a velocity v will cause a Force F experimented by the particle that is orthogonal to both the velocity and the magnetic Field. When a particle experiments a Force orthogonal to its velocity, the path it will follow will be circular. The radius of said circle can be calculated using the expression:
r = 
Where m is the mass of the particle, v is its velocity, q is its charge and B is the magnitude of the magnetic field.
The mass and charge of a proton are:
m = 1.67 * 10^-27 kg
q = 1.6 * 10^-19 C
So, we get that the radius r will be:
r =
= 0.0328 m, or 3.28 cm.
Answer:
W / n = - 9133 J / mol, W / n = 3653 J / mol
, e = 0.600
Explanation:
The Carnot cycle is described by
In this case they indicate that the final volume is
V = 3V₀
In the part of the heat absorption cycle from the source is an isothermal expansion
W = n RT ln (V₀ / V)
W / n = 8.314 1000 ln (1/3)
W / n = - 9133 J / mol
During the part of the isothermal compression in contact with the cold focus, as in a machine the relation of volumes is maintained in this part is compressed three times
W / n = 8.314 400 (3)
W / n = 3653 J / mol
The efficiency of the cycle is
e = 1- 400/1000
e = 0.600
-- The train starts at 23 m/s and slows down by 0.25 m/s every second.
So it'll take (23/0.25) = 92 seconds to stop.
-- Its average speed during that time will be (1/2)(23+0) = 11.5 m/s
-- Moving at an average speed of 11.5 m/s for 92 sec, the train will cover
(11.5 m/s) x (92 sec) = <em>1,058 meters</em> .