In that formula for Energy, 'F' is the frequency of the photon.
But <u>Frequency = (speed)/(wavelength)</u>, so we can write the
Energy formula as
E = h c / (wavelength) .
So the energy, in joules, of a photon with that wavelength, is . . .
E = (6.6 x 10⁻³⁴) x (3 x10⁸) / (that wavelength)
= <em>(1.989 x 10⁻²⁵) / (that wavelength, in meters) .</em>
Answer:
What a medium-mass star becomes after a planetary nebula; a very bright, dense mass about the size of the planet Earth. ... The process that generates all of the energy that a star produces. Supernova. A Red Super Giant explodes into this when it runs out of elements to fuse together.
Explanation:
When its tangential speed is constant
<span>Although the speed of an object that has a uniform circular motion is constant, its velocity is </span>not constant<span>. Not only that, but it is actually changing constantly.</span><span>
</span>
Explanation:
In brief, electrons are negative charges and protons are positive charges. An electron is considered the smallest quantity of negative charge and a proton the smallest quantity of positive charge.
Two negative charges repel. Also, two positive charges repel. A positive charge and a negative charge attract each other (all experimentally verified.)
Point Charge: An accumulation of electric charges at a point (a tiny volume in space) is called a point charge.
Note: When an atom loses an electron, the separated electron forms a negative charge, but the remaining that contains one less electron or consequently one more proton becomes a positive charge. A positive charge is not necessarily a single proton. In most cases, a positive charge is an atom that has lost one or more electron(s).
Given:
The speed of sound is 340 m/s
Time for the echo is 5.2 s.
Let h = the depth of the canyon.
Because the sound of your voice travels to the bottom of the canyon and back to your ear, the total distance traveled is 2h.
By definition,
distance = velocity * time.
Therefore
2h = (340 m/s)*(5.2 s) = 1768 m
h = 884 m
Answer: The depth is 884 m.